Tìm kiếm Giáo án
Bồi dưỡng học sinh giỏi toán 9

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Mã Đức Nghị
Ngày gửi: 17h:31' 08-01-2022
Dung lượng: 507.3 KB
Số lượt tải: 91
Nguồn:
Người gửi: Mã Đức Nghị
Ngày gửi: 17h:31' 08-01-2022
Dung lượng: 507.3 KB
Số lượt tải: 91
Số lượt thích:
0 người
CHUYÊN ĐỀ: ĐỊNH LÝ CEVA VÀ MENELAUS
A. MỤC TIÊU
- HS hiểu được định lí Menelaus và định lí Ceva. Giải các bài toán vận dụng hai định lí này.
- Hình thành và phát triển năng lực tính toán, năng lực chứng minh hình học, năng lực ứng dụng hai định lí Menelaus và Ceva vào chứng minh ba điểm thẳng hàng, chứng minh ba đường thẳng đồng quy.
- Hình thành và phát triển phẩm chất chăm chỉ, trách nhiệm.
B. NỘI DUNG
I. KIẾN THỨC CƠ BẢN
1. Định lý Menelaus (Nhà toán học cổ Hy Lạp, thế kỷ I sau công nguyên)
Cho tam giác ABC. Các điểm A’, B’, C’ lần lượt nằm trên các đường thẳng BC, CA, AB sao cho trong chúng hoặc không có điểm nào, hoặc có đúng 2 điểm thuộc các cạnh của tam giác ABC. Khi đó A’, B’, C’ thẳng hàng khi và chỉ khi
Chứng minh
* Trường hợp 1: Trong 3 điểm A’, B’, C’ có đúng 2 điểm thuộc cạnh tam giác ABC. Giả sử là B’, C’
Qua A kẻ đường thẳng song song với BC cắt đường thẳng B’C’ tại M.
/
Ta có: . Vậy
Gọi A’’ là giao của B’C’ với BC.
Áp dụng định lý Menelaus (phần thuận) ta có
mà nên . Do B’, C’ lần lượt thuộc cạnh CA, AB
nên A’’ nằm ngoài cạnh BC.
Vậy và A’, A’’ nằm ngoài cạnh BC suy ra . Do đó A’, B’, C’ thẳng hàng.
* Trường hợp 2: Trong 3 điểm A’, B’, C’ không có điểm thuộc cạnh tam giác ABC được chứng minh tương tự.
2. Định lý Ceva (Nhà toán học Ý, 1647-1734)
Cho tam giác ABC. Các điểm A’, B’, C’ lần lượt thuộc các đường thẳng BC, CA, AB. Khi đó AA’, BB’, CC’ đồng quy khi và chỉ khi .
Chứng minh
Qua A kẻ đường thẳng song song
với BC cắt đường thẳng BB’, CC’ tại M, N.
Ta có: .
Vậy ta có
Gọi I là giao của BB’ và CC’. Giải sử AI cắt BC tại A’’, suy ra A’’ cũng thuộc BC.
Theo định lý Ceva (phần thuận) ta có mà
nên . Từ đó suy ra . Do đó AA’, BB’, CC’ đồng quy
Định Lý Ceva (CHUNG)
Cho tam giác ABC. D, E, F lần lượt nằm trên các cạnh BC, AC, AB. Chứng minh rằng các mệnh đề sau là tương đương:
. AD,BE,CF đồng quy tại một điểm.
. .
. .
Chứng minh:
Chúng ta sẽ chứng minh rằng 1.1 dẫn đến 1.2, 1.2 dẫn đến 1.3, và 1.3 dẫn đến 1.1.
Giả sử 1.1 đúng. Gọi P là giao điểm của AD, BE, CF. Theo định lý hàm số sin trong tam giác APD, ta có:(1)Tương tự, ta cũng có: (2)
(3)
Nhân từng vế của (1), (2), (3) ta được 1.2.
Giả sử 1.2 đúng. Theo định lý hàm số sin trong tam giác ABD và tam giác ACD ta có:Do đó: (4)
Tương tự, ta cũng có:(5)
(6)
Nhân từng vế của (4), (5), (6) ta được 1.3.
Giả sử 1.3 đúng, ta gọi
Theo 1.1 và 1.2, ta có: hay:
Do đó
II. CÁC BÀI TẬP ÁP DỤNG
Bài 1. Cho (ABC có trung tuyến AM. Trên AM lấy I sao cho AI = 4MI. Đường thẳng BI cắt AC tại P. Chứng minh rằng: PA = 2PC
Lời giải.
Áp dụng định lí Menelaus cho (AMC với cát tuyến BIP ta có:
Suy ra: nên PA = 2PC
Nhận xét: Việc áp dụng định lí Menelaus cho bài toán này dẫn đến lời giải hay và rất ngắn gọn.
/
Bài 2. Cho (ABC. Gọi D là trung điểm của BC, E và F lần lượt là hai điểm nằm trên AB, AC sao cho AD, BF, CE đồng quy. Chứng minh rằng EF // BC
Lời giải.
Áp dụng định lí Ceva cho (ABC với các đường đồng quy là AD, BF và CE ta có Vì BD = CD nên
suy ra Vậy theo định lí Ta-lét ta có: EF // BC
Nhận xét: Trong bài tập trên nếu dùng các
dấu hiệu nhận biết hai
A. MỤC TIÊU
- HS hiểu được định lí Menelaus và định lí Ceva. Giải các bài toán vận dụng hai định lí này.
- Hình thành và phát triển năng lực tính toán, năng lực chứng minh hình học, năng lực ứng dụng hai định lí Menelaus và Ceva vào chứng minh ba điểm thẳng hàng, chứng minh ba đường thẳng đồng quy.
- Hình thành và phát triển phẩm chất chăm chỉ, trách nhiệm.
B. NỘI DUNG
I. KIẾN THỨC CƠ BẢN
1. Định lý Menelaus (Nhà toán học cổ Hy Lạp, thế kỷ I sau công nguyên)
Cho tam giác ABC. Các điểm A’, B’, C’ lần lượt nằm trên các đường thẳng BC, CA, AB sao cho trong chúng hoặc không có điểm nào, hoặc có đúng 2 điểm thuộc các cạnh của tam giác ABC. Khi đó A’, B’, C’ thẳng hàng khi và chỉ khi
Chứng minh
* Trường hợp 1: Trong 3 điểm A’, B’, C’ có đúng 2 điểm thuộc cạnh tam giác ABC. Giả sử là B’, C’
Qua A kẻ đường thẳng song song với BC cắt đường thẳng B’C’ tại M.
/
Ta có: . Vậy
Gọi A’’ là giao của B’C’ với BC.
Áp dụng định lý Menelaus (phần thuận) ta có
mà nên . Do B’, C’ lần lượt thuộc cạnh CA, AB
nên A’’ nằm ngoài cạnh BC.
Vậy và A’, A’’ nằm ngoài cạnh BC suy ra . Do đó A’, B’, C’ thẳng hàng.
* Trường hợp 2: Trong 3 điểm A’, B’, C’ không có điểm thuộc cạnh tam giác ABC được chứng minh tương tự.
2. Định lý Ceva (Nhà toán học Ý, 1647-1734)
Cho tam giác ABC. Các điểm A’, B’, C’ lần lượt thuộc các đường thẳng BC, CA, AB. Khi đó AA’, BB’, CC’ đồng quy khi và chỉ khi .
Chứng minh
Qua A kẻ đường thẳng song song
với BC cắt đường thẳng BB’, CC’ tại M, N.
Ta có: .
Vậy ta có
Gọi I là giao của BB’ và CC’. Giải sử AI cắt BC tại A’’, suy ra A’’ cũng thuộc BC.
Theo định lý Ceva (phần thuận) ta có mà
nên . Từ đó suy ra . Do đó AA’, BB’, CC’ đồng quy
Định Lý Ceva (CHUNG)
Cho tam giác ABC. D, E, F lần lượt nằm trên các cạnh BC, AC, AB. Chứng minh rằng các mệnh đề sau là tương đương:
. AD,BE,CF đồng quy tại một điểm.
. .
. .
Chứng minh:
Chúng ta sẽ chứng minh rằng 1.1 dẫn đến 1.2, 1.2 dẫn đến 1.3, và 1.3 dẫn đến 1.1.
Giả sử 1.1 đúng. Gọi P là giao điểm của AD, BE, CF. Theo định lý hàm số sin trong tam giác APD, ta có:(1)Tương tự, ta cũng có: (2)
(3)
Nhân từng vế của (1), (2), (3) ta được 1.2.
Giả sử 1.2 đúng. Theo định lý hàm số sin trong tam giác ABD và tam giác ACD ta có:Do đó: (4)
Tương tự, ta cũng có:(5)
(6)
Nhân từng vế của (4), (5), (6) ta được 1.3.
Giả sử 1.3 đúng, ta gọi
Theo 1.1 và 1.2, ta có: hay:
Do đó
II. CÁC BÀI TẬP ÁP DỤNG
Bài 1. Cho (ABC có trung tuyến AM. Trên AM lấy I sao cho AI = 4MI. Đường thẳng BI cắt AC tại P. Chứng minh rằng: PA = 2PC
Lời giải.
Áp dụng định lí Menelaus cho (AMC với cát tuyến BIP ta có:
Suy ra: nên PA = 2PC
Nhận xét: Việc áp dụng định lí Menelaus cho bài toán này dẫn đến lời giải hay và rất ngắn gọn.
/
Bài 2. Cho (ABC. Gọi D là trung điểm của BC, E và F lần lượt là hai điểm nằm trên AB, AC sao cho AD, BF, CE đồng quy. Chứng minh rằng EF // BC
Lời giải.
Áp dụng định lí Ceva cho (ABC với các đường đồng quy là AD, BF và CE ta có Vì BD = CD nên
suy ra Vậy theo định lí Ta-lét ta có: EF // BC
Nhận xét: Trong bài tập trên nếu dùng các
dấu hiệu nhận biết hai
 









Các ý kiến mới nhất