Tìm kiếm Giáo án
Ôn tập Chương III. Nguyên hàm. Tích phân và ứng dụng

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Hồng Ánh
Ngày gửi: 14h:07' 15-01-2020
Dung lượng: 818.5 KB
Số lượt tải: 469
Nguồn:
Người gửi: Nguyễn Hồng Ánh
Ngày gửi: 14h:07' 15-01-2020
Dung lượng: 818.5 KB
Số lượt tải: 469
Số lượt thích:
0 người
Ngày soạn:________/__________/__________
Giáo viên dạy : Nguyễn Hồng Ánh
Lớp dạy: 12A2
Trình độ: Trung Bình khá.
CHƯƠNG III: NGUYÊN HÀM
Thời lượng: 5 tiết
A. Mục tiêu
1. Kiến thức:
- Hiểu khái niệm nguyên hàm của một hàm số;
- Biết các tính chất cơ bản của nguyên hàm
2. Kĩ năng:
- Tìm được nguyên hàm của một số hàm số tương đối đơn giản dựa vào bảng nguyên hàm và cách tính nguyên hàm từng phần
- Sử dụng được phương pháp đổ biến số(Khi đã chỉ rõ cách đổi biến số và không đổ biến số quá một lần) để tính nguyên hàm
3. Tư tưởng; thái độ: Rèn luyện việc tính toán chính xác; cẩn thận. Tính chủ động sáng tạo cho học sinh
4.Năng lực hướng tới:
Năng lực chung
- Năng lực hợp tác, giao tiếp, tự học, tự quản lí
- Năng lực tuy duy, sáng tạo, tính toán, giải quyết vấn đề
- Năng lực sử dụng CNTT, sử dụng ngôn ngữ Toán học.
- Năng lực mô hình hóa toán học và năng lực giải quyết vấn đề
- Năng lực sử dụng công nghệ tính toán
Năng lực chuyên biệt: được ứng dụng của toán học trong đời sống, từ đó hình thành niềm say mê khoa học, và có những đóng góp sau này cho xã hội.
B. Nội dung chủ đề
Nội dung 1: Định nghĩa nguyên hàm
Nội dung 2: Tính chất của nguyên hàm
Nội dung 3: Phương pháp tính nguyên hàm: Phương pháp đổi biến số, phương pháp nguyên hàm từng phần
Mô tả cấp độ tư duy của từng nội dung
1. Định nghĩa tích phân
NHẬN BIẾT
THÔNG HIỂU
VẬN DỤNG
VẬN DỤNG CAO
Phát biểu được định nghĩa nguyên hàm, ký hiệu dấu nguyên hàm, biểu thức dưới dấu nguyên hàm.
Tìm được nguyên hàm của một số hàm số tương đối đơn giản dựa vào bảng nguyên hàm và cách tính nguyên hàm từng phần
Sử dụng được phương pháp đổ biến số(Khi đã chỉ rõ cách đổi biến số và không đổ biến số quá một lần) để tính nguyên hàm
- Sử dụng định nghĩa để tính được nguyên hàm của một số hàm số khác
-----------------/-------------------------/----------------------------
TIẾT 1
C. Tiến trình lên lớp
1. Ổn định lớp; kiểm tra sĩ số
2. Kiểm tra bài cũ: thực hiện trong quá trình lên lớp
3. Bài mới:
Nội dung kiến thức cần đạt
Hoạt động của thầy và trò
I. Nguyên hàm và các tính chất
1. Nguyên hàm
Định nghĩa: Cho là một khoảng hoặc đoạn hoặc nửa khoảng. Hàm số được gọi là một nguyên hàm của hàm số trên nếu
Ví dụ
1) là một nguyên hàm của trên
2) là một nguyên hàm của trên
Định lí 1: Nếu là một nguyên hàm của hàm số trên thì với mỗi ; cũng là một nguyên hàm của trên
Định lí 2: Nếu là một nguyên hàm của hàm số trên mỗi nguyên hàm của trên đều có dạng
Tóm lại: Nếu là một nguyên hàm của hàm số trên thì họ các nguyên hàm của trên là . Và được kí hiệu là . Như vậy ta có:
Ví dụ:
Giáo viên: Vấn đáp
- Hàm số nào có đạo hàm là
- Đạo hàm của hàm số
Học sinh:
Chủ động làm việc; trả lời câu hỏi của thầy cô
Giáo viên:
- Nói: Hàm số là một nguyên hàm của hàm số và hàm số là một nguyên hàm của hàm số
Học sinh:
- Tri giác vấn đề
- Hình thành khái niện mới; chuẩn bị đề xuất khái niệm mới
Giáo viên:
- Yêu cầu học sinh đề xuất khái niệm mới
- Nhận xét khái niệm mà học sinh đề xuất; chính xác hoá khái niệm
- Vấn đáp:
+) Ngoài hàm số ; hãy chỉ ra một nguyên hàm khác của
+) Hàm số với là hằng số có phải là nguyên hàm của hàm số hay không
Học sinh:
Dựa vào định nghĩa; trả lời câu hỏi của thầy cô
Giáo viên:
- Phát biểu định lí 1; định lí 2
- Yêu cầu học sinh chứng minh định lí 1
Học sinh:
- Ghi nhớ các định lí 1;2
- Chứng minh định lí 1
2. Các tính chất của nguyên hàm
Tính chất 1:
Tính chất 2:
Tính chất 3:
Giáo viên:
- Giới thiệu các tính chất của nguyên hàm
- Yêu cầu học sinh chứng minh nhanh các tính chất của nguyên hàm
Giáo viên dạy : Nguyễn Hồng Ánh
Lớp dạy: 12A2
Trình độ: Trung Bình khá.
CHƯƠNG III: NGUYÊN HÀM
Thời lượng: 5 tiết
A. Mục tiêu
1. Kiến thức:
- Hiểu khái niệm nguyên hàm của một hàm số;
- Biết các tính chất cơ bản của nguyên hàm
2. Kĩ năng:
- Tìm được nguyên hàm của một số hàm số tương đối đơn giản dựa vào bảng nguyên hàm và cách tính nguyên hàm từng phần
- Sử dụng được phương pháp đổ biến số(Khi đã chỉ rõ cách đổi biến số và không đổ biến số quá một lần) để tính nguyên hàm
3. Tư tưởng; thái độ: Rèn luyện việc tính toán chính xác; cẩn thận. Tính chủ động sáng tạo cho học sinh
4.Năng lực hướng tới:
Năng lực chung
- Năng lực hợp tác, giao tiếp, tự học, tự quản lí
- Năng lực tuy duy, sáng tạo, tính toán, giải quyết vấn đề
- Năng lực sử dụng CNTT, sử dụng ngôn ngữ Toán học.
- Năng lực mô hình hóa toán học và năng lực giải quyết vấn đề
- Năng lực sử dụng công nghệ tính toán
Năng lực chuyên biệt: được ứng dụng của toán học trong đời sống, từ đó hình thành niềm say mê khoa học, và có những đóng góp sau này cho xã hội.
B. Nội dung chủ đề
Nội dung 1: Định nghĩa nguyên hàm
Nội dung 2: Tính chất của nguyên hàm
Nội dung 3: Phương pháp tính nguyên hàm: Phương pháp đổi biến số, phương pháp nguyên hàm từng phần
Mô tả cấp độ tư duy của từng nội dung
1. Định nghĩa tích phân
NHẬN BIẾT
THÔNG HIỂU
VẬN DỤNG
VẬN DỤNG CAO
Phát biểu được định nghĩa nguyên hàm, ký hiệu dấu nguyên hàm, biểu thức dưới dấu nguyên hàm.
Tìm được nguyên hàm của một số hàm số tương đối đơn giản dựa vào bảng nguyên hàm và cách tính nguyên hàm từng phần
Sử dụng được phương pháp đổ biến số(Khi đã chỉ rõ cách đổi biến số và không đổ biến số quá một lần) để tính nguyên hàm
- Sử dụng định nghĩa để tính được nguyên hàm của một số hàm số khác
-----------------/-------------------------/----------------------------
TIẾT 1
C. Tiến trình lên lớp
1. Ổn định lớp; kiểm tra sĩ số
2. Kiểm tra bài cũ: thực hiện trong quá trình lên lớp
3. Bài mới:
Nội dung kiến thức cần đạt
Hoạt động của thầy và trò
I. Nguyên hàm và các tính chất
1. Nguyên hàm
Định nghĩa: Cho là một khoảng hoặc đoạn hoặc nửa khoảng. Hàm số được gọi là một nguyên hàm của hàm số trên nếu
Ví dụ
1) là một nguyên hàm của trên
2) là một nguyên hàm của trên
Định lí 1: Nếu là một nguyên hàm của hàm số trên thì với mỗi ; cũng là một nguyên hàm của trên
Định lí 2: Nếu là một nguyên hàm của hàm số trên mỗi nguyên hàm của trên đều có dạng
Tóm lại: Nếu là một nguyên hàm của hàm số trên thì họ các nguyên hàm của trên là . Và được kí hiệu là . Như vậy ta có:
Ví dụ:
Giáo viên: Vấn đáp
- Hàm số nào có đạo hàm là
- Đạo hàm của hàm số
Học sinh:
Chủ động làm việc; trả lời câu hỏi của thầy cô
Giáo viên:
- Nói: Hàm số là một nguyên hàm của hàm số và hàm số là một nguyên hàm của hàm số
Học sinh:
- Tri giác vấn đề
- Hình thành khái niện mới; chuẩn bị đề xuất khái niệm mới
Giáo viên:
- Yêu cầu học sinh đề xuất khái niệm mới
- Nhận xét khái niệm mà học sinh đề xuất; chính xác hoá khái niệm
- Vấn đáp:
+) Ngoài hàm số ; hãy chỉ ra một nguyên hàm khác của
+) Hàm số với là hằng số có phải là nguyên hàm của hàm số hay không
Học sinh:
Dựa vào định nghĩa; trả lời câu hỏi của thầy cô
Giáo viên:
- Phát biểu định lí 1; định lí 2
- Yêu cầu học sinh chứng minh định lí 1
Học sinh:
- Ghi nhớ các định lí 1;2
- Chứng minh định lí 1
2. Các tính chất của nguyên hàm
Tính chất 1:
Tính chất 2:
Tính chất 3:
Giáo viên:
- Giới thiệu các tính chất của nguyên hàm
- Yêu cầu học sinh chứng minh nhanh các tính chất của nguyên hàm
 








Các ý kiến mới nhất