Violet
Giaoan

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Giáo án

Chương I. §9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Hiển thị toàn màn hình
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Vũ Thị Hạt
Ngày gửi: 15h:52' 16-09-2016
Dung lượng: 87.5 KB
Số lượt tải: 263
Số lượt thích: 0 người
Chuyên đề: một số phương pháp phân tích đa thức
một biến thành nhân tử.
Các phương pháp:
Tách một hạng tử thành nhiều hạng tử.
Thêm, bớt cùng một hạng tử.
Đổi biến số.
Hệ số bất định.
Xét giá trị riêng (Đối với một số đa thức nhiều biến).
I) Phương pháp tách một hạng tử thành nhiều hạng tử:
Đối với các đa thức mà các hạng tử không có nhân tử chung, khi phân tích ra nhân tử ta thường phải tách một hạng tử nào đó ra thành nhiều hạng tử khác để nhóm với các hạng tử đã có trong đa thức để cho trong các nhóm có nhân tử chung, từ đó giữa các nhóm có nhân tử chung mới hoặc xuất hiện các hằng đẳng thức quen thuộc.
Ví dụ 1: Phân tích đa thức sau thành nhân tử:
f(x) = 2x2 - 3x + 1.
Giải:
Cách 1: Tách hạng tử thứ hai: -3x = -2x - x.
Ta có f(x) = (2x2 - 2x) - (x - 1) = 2x(x - 1) - (x - 1) = (x - 1)(2x - 1).
Cách 2:
Ta có f(x) = (x2 - 2x + 1) + (x2 - x) = (x - 1)2 + x(x - 1) = (x - 1)[(x - 1) + x]
= (x - 1)(2x - 1).
Tổng quát: Để phân tích tam thức bậc hai f(x) = ax2 + bx + c ra nhân tử, ta tách hạng tử bx thành b1x + b2x sao cho b1b2 = ac
Bài tập 1: Phân tích các đa thức sau ra nhân tử:
4x2 - 4x - 3;
2x2 - 5x - 3;
3x2 - 5x - 2;
2x2 + 5x + 2.

Ví dụ 2: Phân tích đa thức sau thành nhân tử:
f(x) = x3 - x2 - 4.
Giải:
Ta lần lượt kiểm tra với x = (1; (2; (4 ta thấy f(2) = 0.
Đa thức f(x) có nghiệm x = 2, do đó khi phân tích ra nhân tử, f(x) chứa nhân tử x - 2.
Từ đó: f(x) = x3 - x2 - 4 = (x3 - 2x2) + (x2 - 2x) + (2x - 4)
= x2(x - 2) + x (x - 2) + 2 (x - 2)
= (x - 2)(x2 + x + 2).

Tổng quát: Nếu đa thức f(x) = anxn + an-1xn-1 + … + a1x + a0 có nghiệm nguyên là
x = x0 thì x0 là một ước của hệ số tự do a0, khi phân tích f(x) ra nhân tử thì f(x) có
chứa nhân tử x - x0. Vì vậy đối với những đa thức một biến bậc cao, ta nên tìm lấy
một nghiệm của nó để định hướng việc phân tích ra nhân tử.

Bài tập 2: Phân tích các đa thức sau ra nhân tử:
x3 + 2x - 3;
x3 - 7x + 6;
x3 - 7x - 6; (Nhiều cách)
x3 + 5x2 + 8x + 4;
x3 - 9x2 + 6x + 16;
x3 - x2 - x - 2;
x3 + x2 - x + 2;
x3 - 6x2 - x + 30.

Ví dụ 3: Phân tích đa thức sau thành nhân tử:
f(x) = 3x3 - 7x2 + 17x - 5.
Giải:
Theo ví dụ 2,
 
Gửi ý kiến