Violet
Giaoan

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 091 912 4899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Giáo án

Chương IV. §2. Giới hạn của hàm số

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn: Hồ Yến
Người gửi: Phan Hồng Phúc
Ngày gửi: 21h:20' 30-12-2021
Dung lượng: 812.6 KB
Số lượt tải: 224
Số lượt thích: 1 người (Nguyễn ThịMinh Vy)
Chủ đề : GIỚI HẠN HÀM SỐ
Thời lượng dự kiến: 4 tiết
I. MỤC TIÊU
1. Kiến thức
- Học sinh biết khái niệm giới hạn hữu hạn của hàm số tại một điểm, giới hạn một bên, giới hạn hữu hạn của hàm số tại vô cực, giới hạn vô cực của hàm số.
- Học sinh hiểu được định lí về giới hạn hữu hạn, định lí về giới hạn một bên, một vài giới hạn đặc biệt và các quy tắc về giới hạn vô cực.
2. Kĩ năng
-Học sinh biết cách tính giới hạn hàm số tại một điểm, tính giới hạn hàm số tại vô cực
- Học sinh phân biệt được các dạng vô định  của giới hạn hàm số.
3.Về tư duy, thái độ
-Tích cực, chủ động và hợp tác trong hoạt động nhóm.
- Say mê hứng thú trong học tập và tìm tòi nghiên cứu liên hệ thực tiễn.
-Chủ động phát hiện, chiếm lĩnh tri thức mới, biết quy lạ về quen, có tinh thần hợp tác xâydựng cao.
4.Định hướng các năng lực có thể hình thành và phát triển:
- Năng lực tự học: Học sinh xác định đúng động cơ, thái độ học tập, tự đánh giá và điều chinh kế hoạch học tập, tự nhận ra được sai sót và khắc phục sai sót.
- Năng lực giải quyết vấn đề: Học sinh biết cách huy động các kiến thức đã học để giải quyết các câu hỏi, các bài tập. Biết cách giải quyết các tình huống trong giờ học.
-Năng lực tự quản lý: Làm chủ các cảm xúc của bản thân trong quá trình học tập và trong cuộc sống, trưởng nhóm biết quản lý nhóm mình, phân công nhiệm vụ cụ thể cho từng thành viên trong nhóm, các thành viên tự ý thức được nhiệm vụ của mình và hoàn thành nhiệm vụ được giao.
-Năng lực giao tiếp: Tiếp thu kiến thức , trao đổi học hỏi bạn bè thông qua hoạt động nhóm, có thái độ tôn trọng , lắng nghe, có phản ứng tích cực trong giao tiếp.
- Năng lực hợp tác: Xác định nhiệm vụ của nhóm, nhiệm vụ của bản thân đưa ra ý kiến đóng góp hoàn thành nhiệm vụ của chủ đề.
- Năng lực sử dụng ngôn ngữ: Phát huy khả năng báo cáo trước tập thể, khả năng thuyết trình, nói và viết chính xác bằng ngôn ngữ toán học.
II. CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH
1. Giáo viên:
+Thiết kế hoạt động học tập hợp tác cho học sinh tương ứng với các nhiệm vụ cơ bản của bài học.
+Tổ chức, hướng dẫn học sinh thảo luận, kết luận vấn đề.
+Giáo án, phiếu học tập, phấn, thước kẻ, máy chiếu, ...
2. Học sinh
+ Đọc trước bài, Chuẩn bị bảng phụ, bút viết bảng, khăn lau bảng …
+Mỗi học sinh trả lời ý kiến riêng và phiếu học tập. Mỗi nhóm có phiếu trả lời kết luận của nhóm sau khi đã thảo luận và thống nhất.Mỗi cá nhân hiểu và trình bày được kết luận của nhóm bằng cách tự học hoặc nhờ bạn trong nhóm hướng dẫn.Mỗi người có trách nhiệm hướng dẫn lại cho bạn khi bạn có nhu cầu học tập.
III. TIẾN TRÌNH DẠY HỌC

Mục tiêu: Giúp học sinh biết phối hợp, giúp đỡ nhau trong hoạt động nhóm; gợi nhớ lại kiến thức xác định giá trị của một hàm số khi biết giá trị của biến; tiếp cận khái niệm giới hạn của hàm số.
Nội dung, phương thức tổ chức hoạt động học tập của học sinh
Dự kiến sản phẩm, đánh giá kết quả hoạt động

1.Em có nhận xét gì về hình ảnh sau?
/

2. em có nhận xét gì về giá trị hàm số  khi x dần đến 2?
/
3.
/
GV nhận xét thái độ làm việc, phương án trả lời của các nhóm, ghi nhận và tuyên dương nhóm có câu trả lời tốt nhất. Động viên các nhóm còn lại tích cực, cố gắng hơn trong các hoạt động học tiếp theo.
*Giới hạn cho ta một dự đoán chắc chắn về giá trị hàm số khi biến tiếp cận một đại lượng nào đó: “Giới hạn của hàm số”
Khi 𝑥→𝑎, 𝑓
𝑥→?














𝑓(𝑥)→4
















An rõ ràng không thể bắt Bình nhảy ngay tới B vì Bình sẽ chết, không lẽ An muốn Bình chết, đúng không? Tuy nhiên, để chứng minh khả năng của mình mà không bị chết, Bình có thể nhảy tới điểm gần B bao nhiêu cũng được, miễn sao không chạm vào B. Gần bao nhiêu thì
 
Gửi ý kiến

Hãy thử nhiều lựa chọn khác