Violet
Giaoan

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 091 912 4899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Giáo án

Chương III. §1. Định lí Ta-lét trong tam giác

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn: st
Người gửi: Vũ Nhật Minh
Ngày gửi: 08h:46' 26-02-2021
Dung lượng: 283.0 KB
Số lượt tải: 240
Số lượt thích: 0 người
CHUYÊN ĐỀ 6 - CÁC BÀI TOÁN VỀ ĐỊNH LÍ TA-LÉT
A.Kiến thức:
1. Định lí Ta-lét:
* Định lí Ta-lét:   

* Hệ quả: MN // BC  
B. Bài tập áp dụng:
1. Bài 1:
Cho tứ giác ABCD, đường thẳng qua A song song với BC cắt BD ở E, đường thẳng qua B song song với AD cắt AC ở G
a) chứng minh: EG // CD
b) Giả sử AB // CD, chứng minh rằng AB2 = CD. EG
Giải
Gọi O là giao điểm của AC và BD
a) Vì AE // BC   (1)
BG // AC   (2)
Nhân (1) với (2) vế theo vế ta có:   EG // CD
b) Khi AB // CD thì EG // AB // CD, BG // AD nên

Bài 2:
Cho ABC vuông tại A, Vẽ ra phía ngoài tam giác đó các tam giác ABD vuông cân ở B, ACF vuông cân ở C. Gọi H là giao điểm của AB và CD, K là giao điểm của Ac và BF.
Chứng minh rằng:
a) AH = AK
b) AH2 = BH. CK
Giải
Đặt AB = c, AC = b.
BD // AC (cùng vuông góc với AB)
nên 
Hay  (1)
AB // CF (cùng vuông góc với AC) nên 
Hay  (2)
Từ (1) và (2) suy ra: AH = AK
b) Từ  và  suy ra (Vì AH = AK)
 AH2 = BH . KC
3. Bài 3: Cho hình bình hành ABCD, đường thẳng a đi qua A lần lượt cắt BD, BC, DC theo thứ tự tại E, K, G. Chứng minh rằng:
a) AE2 = EK. EG
b) 
c) Khi đường thẳng a thay đổi vị trí nhưng vẫn qua A thì tích BK. DG có giá trị không đổi
Giải
a) Vì ABCD là hình bình hành và K  BC nên
AD // BK, theo hệ quả của định lí Ta-lét ta có:

b) Ta có:  ;  nên
   (đpcm)
c) Ta có:  (1);  (2)
Nhân (1) với (2) vế theo vế ta có:  không đổi (Vì a = AB; b = AD là độ dài hai cạnh của hình bình hành ABCD không đổi)
4. Bài 4:
Cho tứ giác ABCD, các điểm E, F, G, H theo thứ tự chia trong các cạnh AB, BC, CD, DA theo tỉ số 1:2. Chứng minh rằng:
a) EG = FH
b) EG vuông góc với FH
Giải
Gọi M, N theo thứ tự là trung điểm của CF, DG
Ta có CM =  CF = BC  
EM // AC   (1)
Tơng tự, ta có: NF // BD  (2)
mà AC = BD (3)
Từ (1), (2), (3) suy ra : EM = NF (a)
Tơng tự nh trên ta có: MG // BD, NH // AC và MG = NH = AC (b)
Mặt khác EM // AC; MG // BD Và AC  BD EM  MG  (4)
Tơng tự, ta có: (5)
Từ (4) và (5) suy ra  (c)
Từ (a), (b), (c) suy ra EMG = FNH (c.g.c)  EG = FH
b) Gọi giao điểm của EG và FH là O; của EM và FH là P; của EM và FN là Q thì
  mà (đối đỉnh), (EMG = FNH)
Suy ra   EO  OP  EG  FH
5. Bài 5:
Cho hình thang ABCD có đáy nhỏ CD. Từ D vẽ đường thẳng song song với BC, cắt AC tại M và AB tại K, Từ C vẽ đờng thẳng song song với AD, cắt AB tại F, qua F ta lại vẽ đường thẳng song song với AC, cắt BC tại P. Chứng minh rằng
a) MP // AB
b) Ba đường thẳng MP, CF, DB đồng quy
Giải
a) EP // AC   (1)
AK // CD   (2)
các tứ giác AFCD, DCBK la các hình bình hành nên
AF = DC, FB = AK (3)
Kết hợp (1), (2) và (3) ta có   MP // AB (Định lí Ta-lét đảo) (4
 
Gửi ý kiến