Violet
Giaoan

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 091 912 4899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Giáo án

Số 8

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Mạnh Hà
Ngày gửi: 08h:03' 05-03-2017
Dung lượng: 128.5 KB
Số lượt tải: 10
Số lượt thích: 0 người
ĐỀ 21 ĐỀ THI HS TOÁN 8
Thời gian làm bài: 120 phút
Bài 1 (1,0 điểm) Phân tích các đa thức sau thành nhân tử:
a) x2 – x – 12; b) x2 + 2xy + 4y – 4;
Bài 2: (2,5 điểm) Cho biểu thức: P =
Tìm x để P xác định ; b, Rút gọn P.
c, Tìm giá trị nguyên của x để P nhận giá trị nguyên?
Bài 3: (2,0 điểm)
a, Chứng minh rằng tổng của ba số nguyên chia hết cho 6 thì tổng của lập phương ba số nguyên cũng chia hết cho 6
b, Chứng minh bất đẳng thức:  . Với  là các số dương.
áp dụng : Tìm giá trị nhỏ nhất của . với dương và .
Bài 4: (3,0 điểm)
Cho tam giác ABC cân ở A, D là trung điểm của cạnh BC. Trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N sao cho : MDN = ABC. Chứng minh :
a, Hai tam giác BMD và CDN đồng dạng với nhau ;
b, MD2 = MN . MB
Bài 5:(1,5 điểm)
Cho tam giác ABC trung tuyến AD. Gọi G là trọng tâm của tam giác. Một đường thẳng qua G cắt các cạnh AB, AC lần lượt ở M và N. Chứng minh rằng: 
Đáp án Đề 21
Bài 1: a, x2 - x - 12 = (x-4)(x+3) (1điểm)
b, x2 + 2xy + 4y - 4 = (x-2)(x+2) + 2y(x+2) = (x+2)(x+2y-2) (1điểm)
Bài 2: a, Điều kiện: x (1điểm)
b, P = (1điểm)
(0,5điểm)
 (0,5điểm)
c, P = (1điểm)
Với x nguyên thì P nhận giá trị nguyên khi x-1 là ước của 1: (0,5điểm)
TH1: x-1 = 1 => x = 2 (thõa mãn đk)
TH2: x - 1 = -1 => x = 0 (thõa mãn đk) (0,5điểm)
Bài 3: a, Giả sử a+b+c chia hết cho 6
Ta có: a3 + b3 + c3 = (a+b+c)3- 3 (a+b)(b+c)(c+a) (1điểm)
Ta chứng minh được (a+b)(b+c)(c+a) luôn chia hết cho 2
Thực vậy: Nếu trong tích (a+b)(b+c)(c+a) có ít nhất một thừa số chia hết cho 2 thì tích đó chia hết cho 2
Nếu cả ba thừa số đều không chia hết cho 2. ta có: a+b = 2k + 1; b+c = 2q+1
=> 2b + a+c = 2k +2q= 2k+ +2 = 2(k+q+1) = 2l. Chứng tỏ a+c chia hết cho 2. Khi đó tích sẻ chia hết cho 2. (1điểm)
Vì (a+b)(b+c)(c+a) luôn chia hết cho 2 nên:
3(a+b)(b+c)(c+a) luôn chia hết cho 6
Mà (a+b+c)3 cũng chia hết cho 6 (vì a+b+c chia hết cho 6 )
Do đó (a+b+c)3- 3 (a+b)(b+c)(c+a) chia hết cho 6
Hay: a3 + b3 + c3 chia hết cho 6 (1điểm)
b, Ta có : vì a > 0; b > 0 (0,5điểm)
=> Dấu = xảy ra khi a – b = 0 <=> a = b (
 
Gửi ý kiến