Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Giáo án

SKKN LUYEN KY NANG GIAI PT VO TI

Nhấn vào đây để tải về
Hiển thị toàn màn hình
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Lê Văn Thuận (trang riêng)
Ngày gửi: 22h:21' 30-12-2016
Dung lượng: 303.0 KB
Số lượt tải: 6
Số lượt thích: 0 người
LUYỆN KỸ NĂNG
GIẢI PHƯƠNG TRÌNH VÔ TỶ - TOÁN 9

A. ĐẶT VẤN ĐỀ:
Phương trình vô tỷ là phương trình chứa ẩn trong dấu căn .Trong chương trình đại số 9 ,phương trình vô tỷ là một dạng toán khó. Khi gặp các phương trình có chứa căn tương đối phức tạp, học sinh rất lúng túng không tìm ra cách giải và hay mắc sai lầm khi giải .. Có những phương trình không thể giải bằng các phương pháp quen thuộc. Khi gặp phương trình vô tỷ , học sinh thường chỉ quen một phương pháp là nâng luỹ thừa 2 vế để làm mất dấu căn. Nhưng trong quá trình giải sẽ thường mắc phải một số sai lầm trong phép biến đổi tương đương phương trình ,vì vậy dẫn đến thừa hoặc thiếu nghiệm. Có một số phương trình sau khi làm mất dấu căn sẽ dẫn đến phương trình bậc cao, mà việc nhẩm nghiệm để đưa về phương trình bậc nhất, bậc 2 để giải lại rất là khó khăn . Vì vậy học sinh sẽ rất lúng túng và không tìm ra lời giải .
- Để khắc phục những tồn tại trên khi dạy cho học sinh giải phương trình vô tỷ , giáo viên cần trang bị cho học sinh các kiến thức cơ bản trong sách giáo khoa và kiến thức mở rộng, hình thành các phương pháp giải một cách kịp thời. Với mỗi phương trình cần để cho học sinh nhận dạng phát hiện ra cách giải và tìm ra cách giải phù hợp nhất , nhanh nhất. Qua mỗi dạng tổng quát cách giải và hướng dẫn học sinh đặt đề toán tương tự, từ đó khắc sâu cách làm cho học sinh. Nếu biết phân dạng , chọn các ví dụ tiêu biểu , hình thành đường lối tư duy cho học sinh thì sẽ tạo nên hứng thú nghiên cứu, giúp học sinh hiểu sâu, nhớ lâu và nâng cao hiệu quả giáo dục .
B. GIẢI QUYẾT VẤN ĐỀ:
I- Hệ thống hoá các kiến thức cơ bản liên quan và bổ sung một số kiến thức mở rộng .
1. Các tính chất của luỹ thừa bậc 2, bậc 3, tổng quát hoá các tính chất của luỹ thừa bậc chẵn và luỹ thừa bậc lẻ.
2. Các phương pháp phân tích đa thức thành nhân tử , các hằng đẳng thức .
3. Các bất đẳng thức Côsi, Bunhiacopski, bất đẳng thức có chứa giá trị tuỵêt đối.
4. Cách giải phương trình, bất phương trình bậc nhất , bậc 2 một ẩn, cách giải hệ phương trình.
5. Bổ sung các kiến thức để giải các phương trình đơn giản:
*  =  
*
*
II. Cung cấp cho học sinh các phương pháp thường dùng để giải phương ttrình vô tỷ .
PHƯƠNG PHÁP 1. Nâng lên luỹ thừa để làm mất căn ở 2 vế của phương trình( thường dùng khi 2 vế có luỹ thừa cùng bậc).
Ví dụ: Giải phương trình
 (1)
+ Ở phương trình (1) hai vế đều có căn bậc hai, học sinh có thể mắc sai lầm để nguyên hai vế như vậy và bình phương hai vế để làm mất căn . Vì vậy giáo viên cần phân tích kỹ sai lầm mà học sinh có thể mắc phải tức cần khắc sâu cho học sinh tính chất của luỹ thừa bậc 2:
a = b  a2 = b2 ( Khi a, b cùng dấu )
Vì vậy khi bình phương hai vế được phương trình mới tương đương với phương trình ban đầu khi hai vế cùng dấu.
Ở phương trình (1), VP  0 , nhưng vế trái chưa chắc đã  0 vì vậy ta nên chuyển vế đưa về phương trình có 2 vế cùng  0.
(1)  
Đến đây học sinh có thể bình phương hai vế:

  (*)
Ta lại gặp phương trình có một vế chứa căn , học sinh có thể mắc sai lầm là bình phương tiếp 2 vế để vế phải mất căn mà không để ý hai vế đã cùng dấu hay chưa.
 


 Và trả lời phương trình (*) có 2 nghiệm : 
Sai lầm của học sinh là gì? Tôi cho học sinh khác phát hiện ra những sai lầm :
+ Khi giải chưa chú ý đến điều kiện để các căn thức có nghĩa nên sau khi giải không đó chiếu với điều kiện ở (1) : ĐK :  vì vậy không phải là nghiệm của (1)
+ Khi bình phương hai vế của phương trình (*) cần có điều kiện  vậy  không là nghiệm của (1)
- Sau khi phân tích sai lầm mà học sinh thường gặp , từ đó tôi cho học sinh tìm ra cách giải đúng không phạm sai lầm đã phân tích .
C1: Sau khi tìm được  và  thử lại (1) không nghiệm đúng Vậy (1) vô nghiệm.
( cách thử lại này làm khi việc tìm TXĐ của phương trình
 
Gửi ý kiến