Violet
Giaoan

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Giáo án

Phương pháp hàm số trong giải toán

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Minh Nhiên (trang riêng)
Ngày gửi: 23h:10' 19-08-2009
Dung lượng: 414.7 KB
Số lượt tải: 315
Số lượt thích: 0 người
MỞ ĐẦU

Định nghĩa hàm số và các khái niệm liên quan đến hàm số đã được trình bày ở chương trình sách giáo khoa lớp 10. Nhưng để hiểu rõ các tính chất và các ứng dụng của hàm số thì cần có kiến thức về giải tích mà cụ thể là đạo hàm của hàm số. Kiến thức về đạo hàm và ứng dụng của đạo hàm được trình bày ở chương trình sách giáo khoa cuối lớp 11 và đầu lớp 12.
Dùng đạo hàm của hàm số giúp chúng ta tìm được GTLN, GTNN , xét được khoảng đồng biến , nghich biến của hàm số và xét được tính lồi lõm của đồ thị hàm số.
Từ các ứng dụng đạo hàm của hàm số giúp chúng ta giải được một số bài toán trong phương trình, hệ phương trình, bất phương trình, bất đẳng thức, xét sự hội tụ của dãy số và chứng minh bất đẳng thức.
Trong bài viết này chúng ta tìm hiểu một số ứng dụng của phương pháp hàm số vào trong giải toán.

I- Sử dụng tính đơn điệu của hàm số để giải phương trình, hệ phương trình, bất phương trình.
1) Định lí 1: Nếu hàm số f(x) luôn đồng biến (hoặc luôn nghịch biến) và liên tục trên D thì số nghiệm của phương trình f(x) = k trên D không nhiều hơn một và f(x) = f(y) ( x = y với mọi x, y ( D.
Chứng minh:
a) Giả sử phương trình f(x) = k có nghiệm x = a tức là f(a) = k.
Nếu x > a thì f(x) > f(a) = k suy ra phương trình vô nghiệm.
Nếu x < a thì f(x) < f(a) = k suy ra phương trình vô nghiệm.
b) Nếu x > y thì f(x) > f(y) suy ra phương trình f(x) = f(y) vô nghiệm.
Nếu x < y thì f(x) < f(y) suy ra phương trình f(x) = f(y) vô nghiệm.
2) Định lí 2: Nếu hàm số y = f(x) luôn đồng biến ( hoặc luôn nghịch biến) và hàm số y = g(x) luôn nghịch biến (hoặc luôn đồng biến) và liên tục trên D thì số nghiệm của phương trình f(x) = g(x) không nhiều hơn một.
Chứng minh:
Giả sử phương trình f(x) = g(x) có nghiệm x = a tức là f(a) = g(a).
Nếu x > a thì f(x) > f(a) = g(a) > g(x) suy ra phương trình vô nghiệm.
Nếu x < a thì f(x) < f(a) = g(a) < g(x) suy ra phương trình vô nghiệm.
3) Định lí 3: Nếu đồ thị hàm số y = f(x) lồi (lõm) trên khoảng (a;b) thì phương trình f(x) = 0 nếu có nghiệm thì có tối đa 2 nghiệm.
Ví dụ 1: Giải phương trình 3x = 4 - x.
Giải: Tập xác định D= R. Phương trình tương đương với 3x + x - 4 = 0.
Xét hàm số f(x ) = 3x + x - 4 . Hàm số xác định và liên tục trên R
f’(x) = 3x.ln3 + 1 > 0 ( x (R. Vậy hàm số f(x) đồng biến trên R.
Mặt khác phương trình có một nghiệm x =1. Vậy phương trình có nghiệm duy nhất x = 1.
Bài tập 1: Giải phương trình: 
Bài tập 2: Giải phương trình: .
Ví dụ 2: Giải phương trình : 
Giải: Tập xác định D = R. Phương trình đã cho tương đương với
 (*)
Xét hàm số f(t) = .Hàm số xác định và liên tục trên khoảng(0;+ ()
f’(t) = > 0 (t > 0. Vậy hàm số f(t) đồng biến trên khoảng(0;+ ()
Phương trình (*) ( f(x2 +x + 3) = f(2x2 + 4x + 5)
( x2 +x + 3 = 2x2 + 4x + 5 ( x = - 1 v x = - 2.
Bài tập 1: Giải hệ phương trình 
Bài tập 2: Giải hệ phương trình 
Bài tập 3: Giải hệ phương trình 
Bài tập 4 : Tìm m để hệ phương trình có nghiệm 

Ví dụ 3: Giải phương trình 3x = 2x + 1
Giải: Tập xác định D = R. Phương trình đã cho tương đương với 3x - 2x - 1 = 0.
Xét hàm
 
Gửi ý kiến

↓ CHÚ Ý: Bài giảng này được nén lại dưới dạng RAR và có thể chứa nhiều file. Hệ thống chỉ hiển thị 1 file trong số đó, đề nghị các thầy cô KIỂM TRA KỸ TRƯỚC KHI NHẬN XÉT  ↓