Violet
Giaoan

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Giáo án

Ôn thi vào 10 (Hình Học)

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Quang Tạo (trang riêng)
Ngày gửi: 07h:33' 28-05-2008
Dung lượng: 261.0 KB
Số lượt tải: 282
Số lượt thích: 0 người
Hình học
Câu 1. Cho nửa đường tròn (O) đường kính AB và K là điểm chính giữa cung Ab. Trên cung KB lấy điểm M (khác K, B). Trên tia AM lấy điểm N sao cho AN = BM. Kẻ dây BP song song với KM. Gọi Q là giao điểm của các đường thẳng AP, BM.
a) So sánh hai tam giác AKN, BKM
b) Chứng minh: Tam giác KMN vuông cân.
c) Gọi R, S lần lượt là giao điểm thứ hai của QA, QB với đường tròn ngoại tiếp tam giác Omp. Chứng minh rằng khi M di động trên cung KB thì trung điểm I của RS luôn nằm trên một đường tròn cố định.
Câu 2. Cho đường tròn tâm O và dây AB. Từ trung điểm M của cung AB vẽ hai dây MC, MD cắt AB ở E, F (E ở giữa A và F).
1. Có nhận xét gì về tứ giác CDFE?
2. Kéo dài MC, BD cắt nhau ở I và MD, AC cắt nhau ở K. Chứng minh: IK//AB.
Câu 3. Cho tứ giác ABCD nội tiếp đường tròn đường kính AD. Biết rằng AB=BC=cm, CD=6cm. Tính AD.
Câu 4. Cho nửa đường tròn (O) đường kính AB=2R, vẽ dây AD=R, dây BC=.Kẻ AM và BN vuông góc với CD kéo dài.
1. So sánh DM và CN.
2. Tính MN theo R.
3. Chứng minh SAMNB=SABD+SACB.
Câu 5. Cho nửa đường tròn (O) đường kính AB. Từ điểm M trên tiếp tuyến tại A kẻ tiếp tuyến thứ hai MC với đường tròn, kẻ CH vuông góc với AB. Chứng minh MB chia CH thành hai phần bằng nhau.
Câu 6. Cho tam giác ABC đều và đường tròn tâm O tiếp xúc với AB tại B và AC tại C. Từ điểm M thuộc cung nhỏ BC kẻ MH, MI, MK lần lượt vuông góc với BC, AB, AC.
1. Chứng minh: MH2=MI.MK
2. Nối MB cắt AC ở E. CM cắt AB ở F. So sánh AE và BF?
Câu 7. Cho hình thang ABCD(AB//CD). AC cắt BD ở O. Đường song song với AB tại O cắt AD, BC ở M, N.
1. Chứng minh: 
2. SAOB=a ; SCOD=b2. Tính SABCD.
Câu 8. Cho đường tròn (O;R) và hai dây AB, CD vuông góc với nhau tại P.
1. Chứng minh: a. PA2+PB2+PC2+PD2=4R2
b. AB2+CD2=8R2- 4PO2
2. Gọi M, N lần lượt là trung điểm của AC và BD. Có nhận xét gì về tứ giác OMPN.
Câu 9. Cho hình thang cân ngoại tiếp đường tròn(O;R), có AD//BC. Chứng minh:

Câu 10. Cho tam giác ABC đường phân giác trong AD, trung tuyến AM, vẽ đường tròn (O) qua A, D, M cắt AB, AC, ở E, F.
1. Chứng minh: a. BD.BM=BE.BA
b. CD.CM=CF.CA
2. So sánh BE và CF.
Câu 11. Cho đường tròn (O) nội tiếp hình thoi ABCD gọi tiếp điểm của đường tròn với BC là M và N. Cho MN=1/4 AC. Tính các góc của hình thoi.
Câu 12. Cho đường tròn (O) tiếp xúc với hai cạnh của góc xAy ở B và C. Đường thẳng song song với Ax tại C cắt đường tròn ở D. Nối AD cắt đường tròn ở M, CM cắt AB ở N. Chứng minh:
1. ∆ANC đồng dạng ∆MNA.
2. AN=NB.
Câu 13. Cho ∆ABC vuông ở A đường cao AH. Vẽ đường tròn (O) đường kính HC. Kẻ tiếp tuyến BK với đường tròn( K là tiếp điểm).
1. So sánh ∆BHK và ∆BKC
2. Tính AB/BK.
Câu 14. Cho nửa đường tròn (O) đường kính AB=2R. C là một điểm thuộc cung AB, trên AC kéo dài lấy CM=1/2 AC. Trên BC kéo dài lấy CN=1/2 CB. Nối AN và BM kéo dài cắt nhau ở P. Chứng minh:
1. P, O, C thẳng hàng.
2. AM2+BN2=PO2
Câu 15. Cho hình vuông ABCD. Trên AB và AD lấy M, N sao cho AM=AN. Kẻ AH vuông góc với MD.
1. Chứng minh tam giác AHN đồng dạng với tam giác DHC.
2. Có nhận xét gì về tứ giác NHCD.
Câu 16. Cho tam giác ABC, về phía ngoài dựng 3 tam giác đồng dạng ABM, ACN, BCP. Trong đó:

Gọi Q là điểm đối xứng của P qua BC.
1. Chứng minh: Tam giác QNC đồng dạng tam giác QBM.
2. Có nhận xét gì về tứ giác QMAN.
Câu 17. Cho đường tròn (O;R) và một dây AB=. Gọi M là điểm di động trên cung AB. Tìm tập hợp trực tâm H của tam giác MAB và tập hợp tâm đường tròn nội tiếp I của tam giác MAB.
Câu 18. Cho nửa đường tròn (O) đường kính AB và hai điểm C, D thuộc nửa đường tròn sao cho cung AC nhỏ hơn 900 và góc COD = 900. Gọi M là một điểm trên nửa đường tròn sao cho C là điểm chính giữa cung AM. Các dây AM, BM cắt OC, OD lần lượt tại E, F
a) Tứ giác OEMF là hình gì? Tại sao?
b) Chứng minh: D là điểm chính giữa cung MB.
c) Một đường thẳng d tiếp xúc với nửa đườngtròn tại M và cắt các tia OC, OD lần lượt tại I, K. Chứng minh các tứ giác OBKM và OAIM nội tiếp được.
d) Giả sử tia AM cắt tia BD tại S. Hãy xác định vị trí của C và D sao cho 5 điểm M, O, B, K, S cùng thuộc một đường tròn.
Câu 19. Cho đường tròn (0) và một điểm A nằm ngoài đường tròn. Từ A kẻ hai tiếp tuyến AB, AC và cát tuyến AMN với đường tròn (B, C, M, N thuộc đường tròn và AM < AN). Gọi E là trung điểm của dây MN, I là giao điểm thứ hai của đường thẳng CE với đưởng tròn.
C/m : Bốn điểm A, 0, E, C cùng thuộc một đường tròn.
C/m : góc AOC bằng góc BIC
C/m : BI // MN
Xác định vị trí cát tuyến AMN để diện tích tam giác AIN lớn nhất.
Câu 20. Cho nửa đường tròn (0) đường kính AB, M thuộc cung AB, C thuộc OA. Trên nửa mặt phẳng bờ AB có chứa M kẻ tia Ax,By vuông góc với AB .Đường thẳng qua M vuông góc với MC cắt Ax, By tại P và Q .AM cắt CP tại E, BM cắt CQ tại F.
a/ Chứng minh : Tứ giác APMC, EMFC nội tiếp
b/ Chứng minh : EF//AB
c/ Tìm vị trí của điểm C để tứ giác AEFC là hình bình hành
Câu 21. Cho đường tròn (0; R), một dây CD có trung điểm M. Trên tia đối của tia DC lấy điểm S, qua S kẻ các tiếp tuyến SA, SB với đường tròn. Đường thẳng AB cắt các đường thẳng SO ; OM tại P và Q.
Chứng minh tứ giác SPMQ, tứ giác ABOM nội tiếp.
Chứng minh SA2 = SD. SC.
Chứng minh OM. OQ không phụ thuộc vào vị trí điểm S.
Khi BC // SA. Chứng minh tam giác ABC cân tại A
Xác định vị điểm S trên tia đối của tia DC để C, O, B thẳng hàng và BC // SA.
Câu 22. Cho đường tròn (0) bán kính R, một dây AB cố định ( AB < 2R) và một điểm M bất kỳ trên cung lớn AB. Gọi I là trung điểm của dây AB và (0’) là đường tròn qua M tiếp xúc với AB tại A. Đường thẳng MI cắt (0) và (0’) thứ tự tại N, P.
Chứng minh : IA2 = IP . IM
Chứng minh tứ giác ANBP là hình bình hành.
Chứng minh IB là tiếp tuyến của đường tròn ngoại tiếp tam giác MBP.
Chứng minh rằng khi M di chuyển thì trọng tâm G của tam giác PAB chạy trên một cung tròn cố định.
Câu 23. Cho nửa đường tròn (0) đường kính AB, M là một điểm chính giữa cung AB. K thuộc cung BM ( K khác M và B ). AK cắt MO tại I.
Chứng minh : Tứ giác OIKB nội tiếp được trong một đường tròn.
Gọi H là hình chiếu của M lên AK. Chứng minh : Tứ giác AMHO nội tiếp .
Tam giác HMK là tam giác gì ?
Chứng minh : OH là phân giác của góc MOK.
Xác định vị trí của điểm K để chu vi tam giác OPK lớn nhất (P là hình chiếu của K lên AB)
Câu 24. Cho tam giác ABC với ba góc nhọn nội tiếp đường tròn (0). Tia phân giác trong của góc B, góc C cắt đường tròn này thứ tự tại D và E, hai tia phân giác này cắt nhau tại F. Gọi I, K theo thứ tự là giao điểm của dây DE với các cạnh AB, AC.
a) Chứng minh: các tam giác EBF, DAF cân.
b) Chứng minh tứ giác DKFC nội tiếp và FK // AB
c) Tứ giác AIFK là hình gì ? Tại sao ?
d) Tìm điều kiện của tam giác ABC để tứ giác AEFD là hình thoi đồng thời có diện tích gấp 3 lần diện tích tứ giác AIFK.
Câu 25. Cho đường tròn (O), một đường kính AB cố định, trên đoạn OA lấy điểm I sao cho
AI = . Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tuỳ ý thuộc cung lớn MN ( C không trùng với M, N, B). Nối AC cắt MN tại E.
Chứng minh : Tứ giác IECB nội tiếp.
Chứng minh : Các tam giác AME, ACM đồng dạng và AM2 = AE . AC
Chứng minh : AE .AC – AI .IB = AI2.
Hãy xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.
Câu 26. Cho tứ giác ABCD nội tiếp đường tròn (O;R)(AB < CD). Gọi P là điểm chính giữa của cung nhỏ AB ; DP cắt AB tại E và cắt CB tại K ; CP cắt AB tại F và cắt DA tại I.
Chứng minh: Tứ giác CKID nội tiếp được
Chứng minh: IK // AB.
Chứng minh: Tứ giác CDFE nội tiếp được
Chứng minh: AP2 = PE .PD = PF . PC
Chứng minh : AP là tiếp tuyến của đường tròn ngoại tiếp tam giác AED.
Gọi R1 , R2 là các bán kính đường tròn ngoại tiếp các tam giác AED và BED.
Chứng minh: R1 + R2 = 
Câu 27. Cho tam giac ABC có góc A tù, đường tròn (O) đường kính AB cắt đường tròn (O’) đường kính AC tại giao điểm thứ hai là H. Một đường thẳng d quay quanh A cắt (O) và (O’) thứ tự tại M và N sao cho A nằm giữa M và N.
Chứng minh H thuộc cạnh BC và tứ giác BCNM là hình thang vuông.
Chứng minh tỉ số HM: HN không đổi.
Gọi I là trung điểm của MN, K là trung điểm của BC. Chứng minh A, H, K, I cùng thuộc một đường tròn và I chạy trên một cung tròn cố định.
Xác định vị trí của đường thẳng d để diện tích tứ giác BMNC lớn nhất.
Câu 28. Cho đường tròn (O) đường kính AB = 2R và một dây CD vuông góc với AB tại H.
a) Tính tổng HA2 + HB2 + HC2 + HD2 theo R.
b) Cho OH = HB. Tính chu vi tứ giác ACBD và diện tích phần hình tròn ở ngoài tứ giác này (theo R).
c) Chứng minh rằng trung tuyến HM của tam giác AHD vuông góc với BC.
Câu 29. Cho (O) và một điểm A nằm ngoài (O). Từ A kẻ hai tiếp tuyến AB, AC và cát tuyến AMN với (O). (B, C, M, N cùng thuộc (O); AMChứng minh bốn điểm A, O, E, C cùng nằm trên một đường tròn.
Chứng minh góc AOC=góc BIC
Chứng minh BI//MN.
Xác định ví trí cát tuyến AMN để diện tích tam giác AIN lớn nhất.
Câu 30. Cho đường tròn tâm O đường kính AB. Người ta vẽ đường tròn tâm A bán kính nhỏ hơn AB, nó cắt đường tr
 
Gửi ý kiến

↓ CHÚ Ý: Bài giảng này được nén lại dưới dạng RAR và có thể chứa nhiều file. Hệ thống chỉ hiển thị 1 file trong số đó, đề nghị các thầy cô KIỂM TRA KỸ TRƯỚC KHI NHẬN XÉT  ↓