Violet
Giaoan

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Giáo án

ON TAP TOAN 9

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Cao Cường (trang riêng)
Ngày gửi: 21h:01' 05-05-2008
Dung lượng: 216.0 KB
Số lượt tải: 609
Số lượt thích: 0 người
Tổng hợp các dạng toán ôn thi vào 10
(((
I. Biến đổi đơn giản biểu thức chứa căn thức bậc hai:
Bài 1. Cho biểu thức: 
a. Rút gọn P. b. Tìm a sao cho P>1. c. Cho . Tính P.
Hướng dẫn: a. ; b. ; c.  .
Bài 2. Cho biểu thức 
a. Rút gọn P. b. Tính giá trị của P khi 
c. Với giá trị nào của x thì P đạt giá trị nhỏ nhất và tính giá trị nhỏ nhất đó.
Hướng dẫn: a.  b. c. Pmin=4 khi x=4
Bài 3. Cho biểu thức 
a. Rút gọn P. b. Tìm các giá trị của x để P>0 c. Tìm các giá trị của x để P= -1
d. Với giá trị nào của x thì 
Hướng dẫn: a.  b. x>9 c. 
Bài 4. Cho biểu thức 
a. Rút gọn P. b. Tìm các giá trị của x để  Hướng dẫn: a.  b. 
Bài 5. Cho biểu thức 
a. Rút gọn P. b. Tìm các giá trị của x để P<0
Hướng dẫn: a.  b. x>1
Bài 6. Cho biểu thức 
a. Rút gọn P. b. Tìm các giá trị của x để P<0
c. Tìm các số m để có các giá trị của x thỏa mãn: 
d. Với giá trị nào của x thì P đạt giá trị nhỏ nhất? . Tìm giá trị nhỏ nhất ấy.
Hướng dẫn: a.  b.  c.
Bài 7. Cho biểu thức 
a. Rút gọn P. b. Tìm giá trị của P khi  c. So sánh P với  d. Tìm x để 
Hướng dẫn: a.  c. P>
Bài 8. Cho biểu thức 
a. Rút gọn P. b. Tính a để 
Hướng dẫn: a.  b. 
Bài 9. Cho biểu thức 
a. Rút gọn P. b. Tìm các giá trị của x để P<1 c. Tìm các giá trị của x để P có giá trị nguyên.
Hướng dẫn: a.  b.  c. x=1;16;25;49
Bài 10. Cho biểu thức 
a. Rút gọn P. b. Tìm giá trị của P khi  c. Tìm các giá trị của x để 
Hướng dẫn: a.  b.  c. 
Bài 11. Cho biểu thức 
a. Rút gọn P. b.Xét dấu biểu thức 
Hướng dẫn: a.  b. <0
Bài 12. Cho biểu thức 
a. Rút gọn P. b. Với giá trị nào của a thì 
c. Chứng minh rằng với mọi giá trị của a (thỏa mãn điều kiện xác định) ta đều có P>6.
Hướng dẫn: a.  b. a=4.
Bài 13. Cho biểu thức 
a. Rút gọn P. b. Tìm các giá trị của x để P<0
Hướng dẫn: a.  b. 
Bài 14. Cho biểu thức 
a. Rút gọn P. b. Tìm x để  c. Tìm giá trị nhỏ nhất của P.
Hướng dẫn: a.  b.  c. Pmin= -1 khi x=0
Bài 15. Cho biểu thức 
a. Rút gọn P. b. Hãy so sánh P với 3.
Hướng dẫn: a.  b. P>3
Bài 16. Cho biểu thức 
a. Rút gọn P. b. Tìm các giá trị nguyên của x để P nguyên. c. Tìm các giá trị của x để 
Hướng dẫn: a.  b. x=4;9 c. 

II. Phương trình - Hệ phương trình:
Bài 1. Cho phương trình (m-1)x2-2mx+m-2=0 (x là ẩn)
a. Tìm m để phương trình có nghiệm . Tìm nghiệm còn lại.
b. Tìm m để phương trình có hai nghiệm phân biệt.
c. Tính ;  theo m.
Bài 2. Cho phương trình x2-2(m+1)x+m-4=0 (x là ẩn)
a. Tìm m để phương trình có hai nghiệm trái dấu.
b. CMR phương trình có hai nghiệm phân biệt với mọi m.
c. CM biểu thức không phụ thuộc m.
Bài 3. Cho hệ phương trình: 
a. Giải hệ phương trình với 
b. Xác định giá trị của a để hệ có nghiệm duy nhất thỏa mãn điều kiện x+y>0.
Bài 4. Cho hàm số: y=(m-2)x+n (d)
Tìm các giá trị của m và n để đồ thị (d) của hàm số:
a. Đi qua điểm A(-1;2) và B(3;-4)
b. Cắt trục tung tại điểm có tung độ bằng  và cắt trục hoành tại điểm có hoành độ bằng .
c. Cắt đường thẳng -2y+x-3=0
d. Song song với đường thẳng 3x+2y=1.
Bài 5. Cho phương trình x2+px+q=0
a. Giải phương trình khi  ; 
b. Lập phương trình bậc hai có hai nghiệm là:  (x1; x2 là nghiệm của phương trình đã cho)
Bài 6. Tìm m để phương trình:
a. x2-x+2(m-1)=0 có hai nghiệm dương phân biệt.
b. 4x22x+m-1=0 có hai nghiệm âm phân biệt.
c. (m2+1)x2-2(m+1)x+2m-1=0 có hai nghiệm trái dấu.
Bài 7. Xác định a, b để hệ phương trình:  a. Có nghiệm là  b. Có vô số nghiệm.
Bài 8. Cho bất phương trình: 3mx-2m>x+1
a. Giải bất phương trình khi . b. Giải và biện luận bất phương trình.
Bài 9. Tìm giá trị của m để hệ phương trình:  có nghiệm duy nhất thỏa mãn điều kiện x+y nhỏ nhất.

Bài 10. Cho hàm số y=2x2 (P)
a. Vẽ đồ thị.
b. Tìm trên (P) các điểm cách đều hai trục tọa độ.
c. Tùy theo m, hãy xét số giao điểm của (P) với đường thẳng y=mx-1.
d. Viết phương trình đường thẳng đi qua A(0;-2) và tiếp xúc với (P).

Bài 11. Cho Parabol (P): y=x2 và đường thẳng (d): y=2x+m.
Xác định m để hai đường đó:
a. Tiếp xúc với nhau. Tìm hoành độ tiếp điểm.
b. Cắt nhau tại hai điểm, một điểm có hoành độ x=-1.Tìm tọa độ điểm còn lại.
c. Giả sử (d) cắt (P) tại hai điểm phân biệt A và B. Tìm quĩ tích trung điểm I của AB khi m thay đổi.

Bài 12. Cho đường thẳng có phương trình:
2(m-1)x+(m-2)y=2 (d)
a. Tìm m để đường thẳng (d) cắt (P); y=x2 tại hai điểm phân biệt A và B.
b. Tìm tọa độ trung điểm của đoạn AB theo m.
c. Tìm m để (d) cách gốc tọa độ một khoảng lớn nhất.
d. Tìm điểm cố định mà (d) đi qua khi m thay đổi.

Bài 13. Cho b, c là hai số thỏa mãn: 
Chứng minh ít nhất một trong hai phương trình sau phải có nghiệm: 

Bài 14. Cho (P): y=-x2.
a. Tìm tập hợp điểm M sao cho từ đó có thể kẻ được hai đường thẳng vuông góc với nhau và tiếp xúc với (P).
b. Tìm trên (P) các điểm sao cho khoảng cách tới gốc tọa độ bằng .

Bài 15. Cho phương trình 2x2-2mx+m2-2=0.
a. Tìm các giá trị của m để phương trình có hai nghiệm dương phân biệt.
b. Giả sử phương trình có hai nghiệm không âm, tìm nghiệm dương lớn nhất của phương trình.
III. Giải toán bằng cách lập phương trình - Hệ phương trình:
Bài 1. Trong tháng đầu hai tổ sản xuất được 800 chi tiết máy. Sang tháng thứ hai, tổ I vượt 15%, tổ II vượt mức 20% do đó cuối tháng cả hai tổ sản xuất được 945 chi tiết máy. Tính xem trong tháng đầu mỗi tổ sản xuất được bao nhiêu chi tiết máy.
Bài 2. Một người lái xe ôtô đi từ thành phố A đến thành phố B với vận tốc dự định là 60km/h. Sau khi đi được nửa quãng đường AB với vận tốc ấy, người lái xe đã cho xe tăng vận tốc mỗi giờ 5km, do đó đã đến thành phố B sớm hơn 30 phút so với dự định.
Bài 3. Một xe máy khởi hành từ Hà Nội đi Nam Định với vận tốc 35km/h. Sau đó 24 phút, trên cùng tuyến đường đó, một ôtô xuất phát từ Nam Định đi Hà Nội với vận tốc 45km/h. Biết quãng đường Nam Định-Hà Nội dài 90km. Hỏi sau bao lâu, kể từ khi xe máy xuất phát, hai xe gặp nhau ?
Bài 4. Một ôtô và một xe đạp đi trên quãng đường AB. Vận tốc xe đạp là 15km/h còn vận tốc của ôtô là 50km/h. Biết rằng người đi xe đạp chỉ đi đoạn đường bằng  đoạn đường của ôtô và tổng thời gian đi của hai xe là 4 giờ 16 phút. Tính chiều dài quãng đường cả hai đã đi.
Bài 5. Một ôtô đi từ A đến B với vận tốc ban đầu là 40km/h. Sau khi đi được  quãng đường, ôtô đã tăng vận tốc lên 50km/h. Tính quãng đường AB biết rằng thời gian ôtô đi hết quãng đường đó là 7 giờ.
Bài 6. Một canô xuôi dòng từ bến A đến bến B mất 4 giờ, ngược dòng từ bến B về bến A mất 5 giờ. Tính khoảng cách giữa hai bến A và B, biết rằng vận tốc của dòng nước là 2km/h.
Bài 7. Một canô đi xuôi dòng 44km rồi ngược dòng 27km hết 3h30`. Biết rằng vận tốc thực của canô là 20km/m.Tính vận tốc của dòng nước.
Bài 8. Hai canô cùng khởi hành từ hai bến A, B cách nhau 85km đi ngược chiều nhau. Sau 1h40 phút thì gặp nhau. Tính vận tốc riêng của mỗi ca nô biết rằng vận tốc canô đi xuôi lớn hơn vận tốc canô đi ngược 9km/h và vận tốc của một mảng bèo trôi tự do trên sông đó là 3km/h.
Bài 9.. Một công nhân được giao làm một số sản phẩm trong một thời gian nhất định. Khi còn làm nốt 30 sản phẩm cuối cùng người đó nhận thấy cứ giữ nguyên năng suất cũ thì sẽ chậm 30 phút, nếu tăng năng suất thêm 5 sản phẩm một giờ thì sẽ xong sớm so với dự định 30 phút. Tính năng suất của người công nhân lúc đầu.
Bài 10. Một người đi xe máy từ A đến B với vận tốc trung bình 30km/h. Khi đến B người đó nghỉ 20 phút rồi quay về A với vận tốc trung bình 25km/h. Tính quãng đường AB biết tổng thời gian đi lẫn về là 5 giò 50 phút.
Bài 11. Lúc 6h một ôtô xuất phát từ A đến B với vận tốc trung bình là 40km/h. Khi đến B người lái xe làm nhiệm vụ giao hàng trong 30 phút rồi cho xe quay lại A với vận tốc trung bình 30km/h. Tính quãng đường AB biết rằng ôtô về đến A lúc 10h cùng ngày.
Bài 12. Hai địa điểm A, B cách nhau 56km. Lúc 6h45phút, một người đi xe đạp từ A đến B với vận tốc 10km/h. Sau đó 2 giờ một người đi xe đạp đi từ B đến A với vận tốc 14km/h. Hỏi đến mấy giờ họ gặp nhau và cách A bao nhiêu km?
Bài 13. Một tổ sản xuất phải làm một số dụng cụ trong một thời gian, tính ra mỗi ngày phải làm 30 dụng cụ. Do làm trong mỗi ngày 40 dụng cụ nên không những đã làm thêm 20 dụng cụ mà tổ đó còn làm xong trước thời hạn 7 ngày. Tính số dụng cụ mà tổ sản xuất đó phải làm theo kế hoạch.
Bài 14. Một đội máy cày dự định mỗi ngày cày 40 ha. Khi thực hiện mỗi ngày cày 52 ha. Vì vậy đội không những đã cày xong trước thời hạn 2 ngày mà còn cày thêm được 4 ha. Tính diện tích ruộng mà đội phải cày theo
 
Gửi ý kiến