Tìm kiếm Giáo án
Giá trị LN-GTNN

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Đinh Chí Vinh (trang riêng)
Ngày gửi: 09h:47' 20-08-2010
Dung lượng: 263.0 KB
Số lượt tải: 28
Nguồn:
Người gửi: Đinh Chí Vinh (trang riêng)
Ngày gửi: 09h:47' 20-08-2010
Dung lượng: 263.0 KB
Số lượt tải: 28
Số lượt thích:
0 người
Tiết: 8-9 Ngày soạn:…/08/2010
Tên bài: Ngày dạy: …/0 8/2010
GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ
MỤC TIÊU:
Về kiến thức:
Nắm được ĐN, phương pháp tìm gtln, nn của hs trên khoảng, nữa khoảng, đoạn.
Về kỷ năng:
Tính được gtln, nn của hs trên khoảng, nữa khoảng, đoạn.
Vận dụng vào việc giải và biện luận pt, bpt chứa tham số.
Về tư duy, thái độ:
Rèn luyện tư duy logic, tư duy lý luận.
Tích cực, chủ động nắm kiến thức, tham gia xây dựng bài.
CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH:
Chuẩn bị của giáo viên: Giáo án, thước kẻ,bảng phụ, phiếu học tập, đèn chiếu (nếu có)
Chuẩn bị của học sinh: SGK, Xem nội dung kiến thức của bài học và các nội dung kiến thức có liên quan đến bài học.
PHƯƠNG PHÁP: Gợi mở, vấn đáp, giải quyết vấn đề.
TIẾN TRÌNH DẠY HỌC:
Ổn định lớp:
Bài cũ (5 phút): Cho hs y = x3 – 3x.
Tìm cực trị của hs.
Tính y(0); y(3) và so sánh với các cực trị vừa tìm được.
GV nhận xét, đánh giá.
Bài mới:
TIẾT 1:
HOẠT ĐỘNG CỦA GIÁO VIÊN VÀ HỌC SINH
GHI BẢNG
Hoạt động 1:
* Gv:
Xét hs đã cho trên đoạn [;3] hãy tính y() ; y(1); y(3)
* Hs:
Tính : y() = y(1)= –3 ; y(3)=
*Gv:
Ta nói : là GTLN ; –3 là GTNN của hàm số trên đoạn [ ; 3]
* Gv giới thiệu cho Hs định nghĩa
* Gv giới thiệu Vd 1, SGK, trang 19 để Hs hiểu được định nghĩa vừa nêu.
Hoạt động 2:
* Hs:
-
- Lập bảng biến thiên và nhận xét về GTLN.
*Gv: Theo bảng biến thiên trên khoảng có giá trị cực tiểu củng là giá trị nhỏ nhất của hàm số .
Vậy (tại x = 1). Không tồn tại giá trị lớn nhất của f(x) trên khoảng .
Hoạt động 3:
* Gv: Yêu cầu Hs xét tính đồng biến, nghịch biến và tính giá trị nhỏ nhất, giá trị lớn nhất của các hàm số sau: y = x2 trên đoạn [- 3; 0] và y = trên đoạn [3;5].
* Hs: Thảo luận nhóm để xét tính đồng biến, nghịch biến và tính giá trị nhỏ nhất, giá trị lớn nhất của các hàm số sau: y = x2 trên đoạn [- 3; 0] và y = trên đoạn [3; 5].
* Gv: Giới thiệu với Hs nội dung định lí.
* Gv giới thiệu Vd 2, SGK, trang 20, 21 để Hs hiểu được định lý vừa nêu.
* Hs:
Thảo luận nhóm để xét tính đồng biến, nghịch biến và tính giá trị nhỏ nhất, giá trị lớn nhất, Lên bảng làm ví dụ.
* Gv: Nhận xét và cho điểm.
I. ĐỊNH NGHĨA:
Cho hàm số y=f(x) xác định trên tập D
a. Số M được gọi là giá trị lớn nhất của hàm số y = f(x) trên tập D nếu:
Ký hiệu
b. Số m được gọi là giá trị nhỏ nhất của hàm số y=f(x) trên tập D nếu:
Ký hiệu: .
Ví dụ 1:
Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm sốtrên khoảng .
Bảng biến thiên:
x
0
1
y`
(
0
+
y
+(
(3
+(
II. CÁCH TÍNH GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ TRÊN MỘT ĐOẠN:
1. Định lí:
“Mọi hàm số liên tục trên một đoạn đều có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.”
Ví dụ 2:
Tính giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = sinx.
Từ đồ thị của hàm số y = sinx, ta thấy ngay :
a) Trên đoạn D = ta có :
; ; .
Từ đó ; .
b) Trên đoạn E = ta có :
, , , y(2() = 0.Vậy
Tên bài: Ngày dạy: …/0 8/2010
GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ
MỤC TIÊU:
Về kiến thức:
Nắm được ĐN, phương pháp tìm gtln, nn của hs trên khoảng, nữa khoảng, đoạn.
Về kỷ năng:
Tính được gtln, nn của hs trên khoảng, nữa khoảng, đoạn.
Vận dụng vào việc giải và biện luận pt, bpt chứa tham số.
Về tư duy, thái độ:
Rèn luyện tư duy logic, tư duy lý luận.
Tích cực, chủ động nắm kiến thức, tham gia xây dựng bài.
CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH:
Chuẩn bị của giáo viên: Giáo án, thước kẻ,bảng phụ, phiếu học tập, đèn chiếu (nếu có)
Chuẩn bị của học sinh: SGK, Xem nội dung kiến thức của bài học và các nội dung kiến thức có liên quan đến bài học.
PHƯƠNG PHÁP: Gợi mở, vấn đáp, giải quyết vấn đề.
TIẾN TRÌNH DẠY HỌC:
Ổn định lớp:
Bài cũ (5 phút): Cho hs y = x3 – 3x.
Tìm cực trị của hs.
Tính y(0); y(3) và so sánh với các cực trị vừa tìm được.
GV nhận xét, đánh giá.
Bài mới:
TIẾT 1:
HOẠT ĐỘNG CỦA GIÁO VIÊN VÀ HỌC SINH
GHI BẢNG
Hoạt động 1:
* Gv:
Xét hs đã cho trên đoạn [;3] hãy tính y() ; y(1); y(3)
* Hs:
Tính : y() = y(1)= –3 ; y(3)=
*Gv:
Ta nói : là GTLN ; –3 là GTNN của hàm số trên đoạn [ ; 3]
* Gv giới thiệu cho Hs định nghĩa
* Gv giới thiệu Vd 1, SGK, trang 19 để Hs hiểu được định nghĩa vừa nêu.
Hoạt động 2:
* Hs:
-
- Lập bảng biến thiên và nhận xét về GTLN.
*Gv: Theo bảng biến thiên trên khoảng có giá trị cực tiểu củng là giá trị nhỏ nhất của hàm số .
Vậy (tại x = 1). Không tồn tại giá trị lớn nhất của f(x) trên khoảng .
Hoạt động 3:
* Gv: Yêu cầu Hs xét tính đồng biến, nghịch biến và tính giá trị nhỏ nhất, giá trị lớn nhất của các hàm số sau: y = x2 trên đoạn [- 3; 0] và y = trên đoạn [3;5].
* Hs: Thảo luận nhóm để xét tính đồng biến, nghịch biến và tính giá trị nhỏ nhất, giá trị lớn nhất của các hàm số sau: y = x2 trên đoạn [- 3; 0] và y = trên đoạn [3; 5].
* Gv: Giới thiệu với Hs nội dung định lí.
* Gv giới thiệu Vd 2, SGK, trang 20, 21 để Hs hiểu được định lý vừa nêu.
* Hs:
Thảo luận nhóm để xét tính đồng biến, nghịch biến và tính giá trị nhỏ nhất, giá trị lớn nhất, Lên bảng làm ví dụ.
* Gv: Nhận xét và cho điểm.
I. ĐỊNH NGHĨA:
Cho hàm số y=f(x) xác định trên tập D
a. Số M được gọi là giá trị lớn nhất của hàm số y = f(x) trên tập D nếu:
Ký hiệu
b. Số m được gọi là giá trị nhỏ nhất của hàm số y=f(x) trên tập D nếu:
Ký hiệu: .
Ví dụ 1:
Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm sốtrên khoảng .
Bảng biến thiên:
x
0
1
y`
(
0
+
y
+(
(3
+(
II. CÁCH TÍNH GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ TRÊN MỘT ĐOẠN:
1. Định lí:
“Mọi hàm số liên tục trên một đoạn đều có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.”
Ví dụ 2:
Tính giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = sinx.
Từ đồ thị của hàm số y = sinx, ta thấy ngay :
a) Trên đoạn D = ta có :
; ; .
Từ đó ; .
b) Trên đoạn E = ta có :
, , , y(2() = 0.Vậy
 
Các ý kiến mới nhất