Violet
Giaoan

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Giáo án

Đề luyện thi vào thph (nhanh tay không hết)

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: K T D
Ngày gửi: 21h:13' 22-05-2008
Dung lượng: 246.5 KB
Số lượt tải: 566
Số lượt thích: 0 người
Đề số 1

Câu 1 ( 3 điểm )
Cho biểu thức :

Tìm điều kiện của x để biểu thức A có nghĩa .
Rút gọn biểu thức A .
Giải phương trình theo x khi A = -2 .
Câu 2 ( 1 điểm )
Giải phương trình :

Câu 3 ( 3 điểm )
Trong mặt phẳng toạ độ cho điểm A ( -2 , 2 ) và đường thẳng (D) : y = - 2(x +1) .
Điểm A có thuộc (D) hay không ?
Tìm a trong hàm số y = ax2 có đồ thị (P) đi qua A .
Viết phương trình đường thẳng đi qua A và vuông góc với (D) .
Câu 4 ( 3 điểm )
Cho hình vuông ABCD cố định , có độ dài cạnh là a .E là điểm đi chuyển trên đoạn CD ( E khác D ) , đường thẳng AE cắt đường thẳng BC tại F , đường thẳng vuông góc với AE tại A cắt đường thẳng CD tại K .
Chứng minh tam giác ABF = tam giác ADK từ đó suy ra tam giác AFK vuông cân .
Gọi I là trung điểm của FK , Chứng minh I là tâm đường tròn đi qua A , C, F , K .
Tính số đo góc AIF , suy ra 4 điểm A , B , F , I cùng nằm trên một đường tròn .










Đề số 2
Câu 1 ( 2 điểm )
Cho hàm số : y = 
Nêu tập xác định , chiều biến thiên và vẽ đồ thi của hàm số.
Lập phương trình đường thẳng đi qua điểm ( 2 , -6 ) có hệ số góc a và tiếp xúc với đồ thị hàm số trên .
Câu 2 ( 3 điểm )
Cho phương trình : x2 – mx + m – 1 = 0 .
Gọi hai nghiệm của phương trình là x1 , x2 . Tính giá trị của biểu thức .
 . Từ đó tìm m để M > 0 .
Tìm giá trị của m để biểu thức P =  đạt giá trị nhỏ nhất .
Câu 3 ( 2 điểm )
Giải phương trình :


Câu 4 ( 3 điểm )
Cho hai đường tròn (O1) và (O2) có bán kính bằng R cắt nhau tại A và B , qua A vẽ cát tuyến cắt hai đường tròn (O1) và (O2) thứ tự tại E và F , đường thẳng EC , DF cắt nhau tại P .
Chứng minh rằng : BE = BF .
Một cát tuyến qua A và vuông góc với AB cắt (O1) và (O2) lần lượt tại C,D . Chứng minh tứ giác BEPF , BCPD nội tiếp và BP vuông góc với EF .
Tính diện tích phần giao nhau của hai đường tròn khi AB = R .











Đề số 3
Câu 1 ( 3 điểm )
Giải bất phương trình : 
Tìm giá trị nguyên lớn nhất của x thoả mãn .

Câu 2 ( 2 điểm )
Cho phương trình : 2x2 – ( m+ 1 )x +m – 1 = 0
Giải phương trình khi m = 1 .
Tìm các giá trị của m để hiệu hai nghiệm bằng tích của chúng .
Câu3 ( 2 điểm )
Cho hàm số : y = ( 2m + 1 )x – m + 3 (1)
Tìm m biết đồ thị hàm số (1) đi qua điểm A ( -2 ; 3 ) .
Tìm điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị của m .
Câu 4 ( 3 điểm )
Cho góc vuông xOy , trên Ox , Oy lần lượt lấy hai điểm A và B sao cho OA = OB . M là một điểm bất kỳ trên AB .
Dựng đường tròn tâm O1 đi qua M và tiếp xúc với Ox tại A , đường tròn tâm O2 đi qua M và tiếp xúc với Oy tại B , (O1) cắt (O2) tại điểm thứ hai N .
Chứng minh tứ giác OANB là tứ giác nội tiếp và ON là phân giác của góc ANB .
Chứng minh M nằm trên một cung tròn cố định khi M thay đổi .
Xác định vị trí của M để khoảng cách O1O2 là ngắn nhất .













Đề số 4 .
Câu 1 ( 3 điểm )
Cho biểu thức : 
Rút gọn biểu thức .
Tính giá trị của  khi 
Câu 2 ( 2 điểm )
Giải phương trình : 
Câu 3 ( 2 điểm )
Cho hàm số : y = -
Tìm x biết f(x) = - 8 ; -  ; 0 ; 2 .
Viết phương trình đường thẳng đi qua hai điểm A và B nằm trên đồ thị có hoành độ lần lượt là -2 và 1 .
Câu 4 ( 3 điểm )
Cho hình vuông ABCD , trên cạnh BC lấy 1 điểm M . Đường tròn đường kính AM cắt đường tròn đường kính BC tại N và cắt cạnh AD tại E .
Chứng minh E, N , C thẳng hàng .
Gọi F là giao điểm của BN và DC . Chứng minh 
Chứng minh rằng MF vuông góc với AC .















Đề số 5
Câu 1 ( 3 điểm )
Cho hệ phương trình : 
Giải hệ phương trình khi m = 1 .
Giải và biện luận hệ phương trình theo tham số m .
Tìm m để x – y = 2 .
Câu 2 ( 3 điểm )
Giải hệ phương trình : 
Cho phương trình bậc hai : ax2 + bx + c = 0 . Gọi hai nghiệm của phương trình là x1 , x2 . Lập phương trình bậc hai có hai nghiệm là 2x1+ 3x2 và 3x1 + 2x2 .
Câu 3 ( 2 điểm )
Cho tam giác cân ABC ( AB = AC ) nội tiếp đường tròn tâm O . M là một điểm chuyển động trên đường tròn . Từ B hạ đường thẳng vuông góc với AM cắt CM ở D .
Chứng minh tam giác BMD cân
Câu 4 ( 2 điểm )
Tính : 
Giải bất phương trình :
( x –1 ) ( 2x + 3 ) > 2x( x + 3 ) .














Đề số 6
Câu 1 ( 2 điểm )
Giải hệ phương trình : 
Câu 2 ( 3 điểm )
Cho biểu thức : 
Rút gọn biểu thức A .
Coi A là hàm số của biến x vẽ đồ thi hàm số A .
Câu 3 ( 2 điểm )
Tìm điều kiện của tham số m để hai phương trình sau có nghiệm chung .
x2 + (3m + 2 )x – 4 = 0 và x2 + (2m + 3 )x +2 =0 .
Câu 4 ( 3 điểm )
Cho đường tròn tâm O và đường thẳng d cắt (O) tại hai điểm A,B . Từ một điểm M trên d vẽ hai tiếp tuyến ME , MF ( E , F là tiếp điểm ) .
Chứng minh góc EMO = góc OFE và đường tròn đi qua 3 điểm M, E, F đi qua 2 điểm cố định khi m thay đổi trên d .
Xác định vị trí của M trên d để tứ giác OEMF là hình vuông .
















Đề số 7

Câu 1 ( 2 điểm )
Cho phương trình (m2 + m + 1 )x2 - ( m2 + 8m + 3 )x – 1 = 0
Chứng minh x1x2 < 0 .
Gọi hai nghiệm của phương trình là x1, x2 . Tìm giá trị lớn nhất , nhỏ nhất của biểu thức :
S = x1 + x2 .
Câu 2 ( 2 điểm )
Cho phương trình : 3x2 + 7x + 4 = 0 . Gọi hai nghiệm của phương trình là x1 , x2 không giải phương trình lập phương trình bậc hai mà có hai nghiệm là :  và  .
Câu 3 ( 3 điểm )
Cho x2 + y2 = 4 . Tìm giá trị lớn nhất , nhỏ nhất của x + y .
Giải hệ phương trình : 
Giải phương trình : x4 – 10x3 – 2(m – 11 )x2 + 2 ( 5m +6)x +2m = 0
Câu 4 ( 3 điểm )
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O . Đường phân giác trong của góc A , B cắt đường tròn tâm O tại D và E , gọi giao điểm hai đường phân giác là I , đường thẳng DE cắt CA, CB lần lượt tại M , N .
Chứng minh tam giác AIE và tam giác BID là tam giác cân .
Chứng minh tứ giác AEMI là tứ giác nội tiếp và MI // BC .
Tứ giác CMIN là hình gì ?













Đề số 8

Câu1 ( 2 điểm )
Tìm m để phương trình ( x2 + x + m) ( x2 + mx + 1 ) = 0 có 4 nghiệm phân biệt .
Câu 2 ( 3 điểm )
Cho hệ phương trình : 
Giải hệ khi m = 3
Tìm m để phương trình có nghiệm x > 1 , y > 0 .
Câu 3 ( 1 điểm )
Cho x , y là hai số dương thoả mãn x5+y5 = x3 + y3 . Chứng minh x2 + y2  1 + xy
Câu 4 ( 3 điểm )
Cho tứ giác ABCD nội tiếp đường tròn (O) . Chứng minh
AB.CD + BC.AD = AC.BD
Cho tam giác nhọn ABC nội tiếp trong đường tròn (O) đường kính AD . Đường cao của tam giác kẻ từ đỉnh A cắt cạnh BC tại K và cắt đường tròn (O) tại E .
Chứng minh : DE//BC .
Chứng minh : AB.AC = AK.AD .
Gọi H là trực tâm của tam giác ABC . Chứng minh tứ giác BHCD là hình bình hành .















Đề số 9
Câu 1 ( 2 điểm )
Trục căn thức ở mẫu các biểu thức sau :
; ; 
Câu 2 ( 3 điểm )
Cho phương trình : x2 – ( m+2)x + m2 – 1 = 0 (1)
Gọi x1, x2 là hai nghiệm của phương trình .Tìm m thoả mãn x1 – x2 = 2 .
Tìm giá trị nguyên nhỏ nhất của m để phương trình có hai nghiệm khác nhau .
Câu 3 ( 2 điểm )
Cho 
Lập một phương trình bậc hai có các hệ số bằng số và có các nghiệm là x1 = 
Câu 4 ( 3 điểm )
Cho hai đường tròn (O1) và (O2) cắt nhau tại A và B . Một đường thẳng đi qua A cắt đường tròn (O1) , (O2) lần lượt tại C,D , gọi I , J là trung điểm của AC và AD .
Chứng minh tứ giác O1IJO2 là hình thang vuông .
Gọi M là giao diểm của CO1 và DO2 . Chứng minh O1 , O2 , M , B nằm trên một đường tròn
E là trung điểm của IJ , đường thẳng CD quay quanh A . Tìm tập hợp điểm E.
Xác định vị trí của dây CD để dây CD có độ dài lớn nhất .











Đề số 10
Câu 1 ( 3 điểm )
1)Vẽ đồ thị của hàm số : y = 
2)Viết phương trình đường thẳng đi qua điểm (2; -2) và (1 ; -4 )
Tìm giao điểm của đường thẳng vừa tìm được với đồ thị trên .
Câu 2 ( 3 điểm )
a) Giải phương trình :

b)Tính giá trị của biểu thức
 với 
Câu 3 ( 3 điểm )
Cho tam giác ABC , góc B và góc C nhọn . Các đường tròn đường kính AB , AC cắt nhau tại D . Một đường thẳng qua A cắt đường tròn đường kính AB , AC lần lượt tại E và F .
Chứng minh B , C , D thẳng hàng .
Chứng minh B, C , E , F nằm trên một đường tròn .
Xác định vị trí của đường thẳng qua A để EF có độ dài lớn nhất .
Câu 4 ( 1 điểm )
Cho F(x) = 
Tìm các giá trị của x để F(x) xác định .
Tìm x để F(x) đạt giá trị lớn nhất .















Đề số 11
Câu 1 ( 3 điểm )
Vẽ đồ thị hàm số 
Viết phương trình đường thẳng đi qua hai điểm ( 2 ; -2 ) và ( 1 ; - 4 )
Tìm giao điểm của đường thẳng vừa tìm được với đồ thị trên .
Câu 2 ( 3 điểm )
Giải phương trình :

Giải phương trình :

Câu 3 ( 3 điểm )
Cho hình bình hành ABCD , đường phân giác của góc BAD cắt DC và BC theo thứ tự tại M và N . Gọi O là tâm đường tròn ngoại tiếp tam giác MNC .
Chứng minh các tam giác DAM , ABN , MCN , là các tam giác cân .
Chứng minh B , C , D , O nằm trên một đường tròn .
Câu 4 ( 1 điểm )
Cho x + y = 3 và y  . Chứng minh x2 + y2 
















Đề số 12
Câu 1 ( 3 điểm )
Giải phương trình : 
Xác định a để tổng bình phương hai nghiệm của phương trình x2 +ax +a –2 = 0 là bé nhất .
Câu 2 ( 2 điểm )
Trong mặt phẳng toạ độ cho điểm A ( 3 ; 0) và đường thẳng x – 2y = - 2 .
Vẽ đồ thị của đường thẳng . Gọi giao điểm của đường thẳng với trục tung và trục hoành là B và E .
Viết phương trình đường
No_avatar

 Kiều Trí Dũng là GV hay là lái buôn đấy nhỉ? Liệu  Kiều Trí Dũng có biết rằng 02 bài mà Dũng đưa lên (Nhanh tay không hết) đã được Thầy Đăng Dương đưa lên trang web này cách đây không lâu và có biết bao nhiêu người đã tải về không?

 

No_avatar
Tôi đã xem lại rồi 02 bài đó của bạn  Đăng Dương có 249+141 người tải và đã gửi ngày 04/05/2008. Vậy  Kiều Trí Dũng nên xóa đi cho trang web này đỡ loạn.
No_avatar
Kiều Trí Dũng  nên xóa ngay các bài đã gửi của mình đi để trang ưeb này thêm trong sáng hơn.
No_avatar
Kiều Trí Dũng   làm thế này tôi e sợ bị ảnh hưởng tới đạo đức của nhà giáo ! Hơn nữ còn trường THCS Đại Đồng thì sao???????
Avatar
Các bác thông cảm trình độ có hạn nên chỉ có cách này thôi. Cố đấm ăn xôi mà.
Avatar

Bạn Kiều trí Dũng ơi ! không nghe bạn bè mình phản ánh à , nên xin lỗi và xóa ngay đi chứ , còn nếu bạn có ý tải lại bài của thầy Đăng Dương cho những người mới gia nhập thì ý tốt đấy nhưng nên ghi tên của thầy Đăng Dương và nêu rõ ý định của mình thì hay lắm .

 

Avatar
Trên thư viện bây giờ rất nhiều nhiều.... như thế này.Tại phản ứng Hóa Học: ĐIỂM = VIOLET. Nên những sự việc trên đang phổ biến.Tuyệt
No_avatar

Ban Kieu Tri Dung oi. ban hay lam nhu moi nguoi gop y di , khan truong len , khong thi xau ho Ha Tay minh lam day.Mong ban lan sau dung nhu vay.Khóc

 

 

Avatar
Theo Tôi vấn đề này khó giải quyết : 1) Nếu tác giả xóa bài thì số điểm sẽ mất ( nên rất tiếc). 2) BQTsẽ cân nhắc số điểm thật sự của tác giả , để xem xét  và khen thưởng . Tôi tin BQT sẽ  giải quyết như thế ?. Vậy xin các chị , các Thầy an tâm.Cười
No_avatar

 Có lẽ tôi xin thoát khỏi Baigiang.bachkim.vn thôi. Bây giờ xuất hiện loại đạo toán như Kiều Trí Dũng   thì thất vọng quá & hơn nữa buồn cho THCS Đại Đồng -  Hà tây có thầy giáo như Kiều Trí Dũng  . Đăng Dương đây lên mạng chỉ là chia sẻ chứ không phải vì điểm hay VIOLET. Không biết các quí thầy cô nghĩ sao???Điếm của Đăng Dương chắc các quí thầy cô đã biết.  Nếu quí thầy cô nào chưa biết thì vào trang gửi lên của Đăng Dương  khắc biết ! Xin cảm ơn !

 
Gửi ý kiến

↓ CHÚ Ý: Bài giảng này được nén lại dưới dạng RAR và có thể chứa nhiều file. Hệ thống chỉ hiển thị 1 file trong số đó, đề nghị các thầy cô KIỂM TRA KỸ TRƯỚC KHI NHẬN XÉT  ↓