Violet
Giaoan

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Giáo án

dãy số viết theo quy luật

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Lê Thị Minh Luân
Ngày gửi: 20h:21' 05-04-2013
Dung lượng: 170.0 KB
Số lượt tải: 1633
Số lượt thích: 0 người


Một vài phương pháp tính tổng các số
tạo thành dãy số có quy luật
I > Phương pháp dự đoán và quy nạp :
Trong một số trường hợp khi gặp bài toán tính tổng hữu hạn
Sn = a1 + a2 + .... an (1)
Bằng cách nào đó ta biết được kết quả (dự đoán , hoặc bài toán chứng minh khi đã cho biết kết quả). Thì ta nên sử dụng phương pháp này và hầu như thế nào cũng chứng minh được .
Ví dụ 1 : Tính tổng Sn =1+3+5 +... + (2n -1 )
Thử trực tiếp ta thấy : S1 = 1
S2 = 1 + 3 =22
S3 = 1+ 3+ 5 = 9 = 32
... ... ...
Ta dự đoán Sn = n2
Với n = 1;2;3 ta thấy kết quả đúng
giả sử với n= k ( k 1) ta có Sk = k 2 (2)
ta cần phải chứng minh Sk + 1 = ( k +1 ) 2 ( 3)
Thật vậy cộng 2 vế của ( 2) với 2k +1 ta có
1+3+5 +... + (2k – 1) + ( 2k +1) = k2 + (2k +1)
vì k2 + ( 2k +1) = ( k +1) 2 nên ta có (3) tức là Sk+1 = ( k +1) 2
theo nguyên lý quy nạp bài toán được chứng minh
vậy Sn = 1+3=5 + ... + ( 2n -1) = n2
Tương tự ta có thể chứng minh các kết quả sau đây bằng phương pháp quy nạp toán học .
1, 1 + 2+3 + .... + n =
2, 12 + 2 2 + ..... + n 2 =
3, 13+23 + ..... + n3 =
4, 15 + 25 + .... + n5 = n2 (n + 1) 2 ( 2n2 + 2n – 1 )
II > Phương pháp khử liên tiếp :
Giả sử ta cần tính tổng (1) mà ta có thể biểu diễn ai , i = 1,2,3...,n , qua hiệu hai số hạng liên tiếp của 1 dãy số khác , chính xác hơn , giả sử : a1 = b1 - b2
a2 = b2 - b3
.... .... .....
an = bn – bn+ 1
khi đó ta có ngay :
Sn = ( b1 – b2 ) + ( b2 – b3 ) + ...... + ( bn – bn + 1 )
= b1 – bn + 1
Ví dụ 2 : tính tổng :
S =
Ta có : , ,
Do đó :
S =
Dạng tổng quát
Sn = ( n > 1 )
= 1-
Ví dụ 3 : tính tổng
Sn =
Ta có Sn =
Sn =
Sn =
Ví dụ 4 : tính tổng
Sn = 1! +2.2 ! + 3.3 ! + ...... + n .n! ( n! = 1.2.3 ....n )
Ta có : 1! = 2! -1!
2.2! = 3 ! -2!
3.3! = 4! -3!
..... ..... .....
n.n! = (n + 1) –n!
Vậy Sn = 2! - 1! +3! – 2 ! + 4! - 3! +...... + ( n+1) ! – n!
= ( n+1) ! - 1! = ( n+ 1) ! - 1
Ví dụ 5 : tính tổng
Sn =

Ta có : i = 1 ; 2 ; 3; ....; n
Do đó Sn = ( 1-
= 1-
III > Phương pháp giải phương trình với ẩn là tổng cần tính:
Ví dụ 6 : Tính tổng
S = 1+2+22 +....... + 2100 ( 4)
ta viết lại S như sau :
 
Gửi ý kiến