Banner-giaoan-1090_logo1
Banner-giaoan-1090_logo2

Tìm kiếm Giáo án

Quảng cáo

Hướng dẫn sử dụng thư viện

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 036 286 0000
  • contact@bachkim.vn

Cực trị hình học

Nhấn vào đây để tải về
Hiển thị toàn màn hình
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Trần Anh Vũ (trang riêng)
Ngày gửi: 23h:36' 19-10-2010
Dung lượng: 217.2 KB
Số lượt tải: 2781
Số lượt thích: 1 người (Lê Hữu Quý)

Chủ đề tự chọn:
CỰC TRỊ HÌNH HỌC

Giáo viên : Trần Anh Vũ

I/Đặt vấn đề :

Trong chương trình hiện nay , môn học tự chọn mang tính bắt buộc , nhưng tài liệu phục vụ cho việc dạy và học môn này còn hạn chế .Trong quá trình dạy học tự chọn và bồi dưỡng học sinh giỏi lớp 9 bản thân tôi đã viết chủ đề này nhằm giúp cho học sinh đào sâu hơn kiến thức đã được học , tập thói quen tự học , tập dượt nghiên cứu những vấn đề đơn giản và phục vụ cho những em có khả năng học và hứng thú với bộ môn Toán.

II/Cơ sở lý luận:

+ Theo hướng dẫn dạy học tự chọn cấp THCS và THPT số 8607/BGDĐT –GDTrH ban hành ngày 16/8/ 2007 của bộ Giáo dục và Đào tạo.
+ Theo hướng dẫn của Sở GD &ĐT Quảng Nam năm 2006 về chương trình khung bồi dưỡng HS giỏi môn Toán THCS.
+ Phương pháp dạy các chủ đề tự chọn nâng cao hướng vào bổ sung , nâng cao kiến thức khai thác sâu chương trình, rèn luyện kỹ năng và tư duy sáng tạo cho học sinh.
+Rèn luyện cho các em có năng lực học tập , nâng cao khả năng tư duy sáng tạo, rèn luyện kỹ năng áp dụng kiến thức Toán học vào các bộ môn khác .

III/ Cơ sở thực tiễn:

+Đây là dạng toán hình học được sử dụng trong chương trình hình học THCS . Tuy nhiên trong sách giáo khoa không có hướng dẫn phương pháp giải toán một cách cụ thể ,vì vậy học sinh thường lúng túng khi gặp dạng toán này.
+Trong quá trình dạy chủ đề tự chọn loại nâng cao và dạy bồi dưỡng học sinh giỏi lớp 9 , bản thân tôi đã tìm hiểu nhiều tài liệu và nhận thấy đây là dạng toán tương đối khó , tuy nhiên phần nhiều các tài liệu chỉ đưa ra bài tập và bài giải chứ ít đề cập đến lý thuyết vì vậy học sinh ít giải được dạng toán này do không hiểu đề, không tìm ra lời giải hoặc có khi chỉ đơn giản là không trình bày bài giải được.
+ Các bài toán cực trị gắn toán học với thực tiễn vì việc tìm giá trị lớn nhất , giá trị nhỏ nhất chính là việc tìm những cái tối ưu thường đặt ra trong đời sống và kỹ thuật.

IV /Nội dung nghiên cứu :


Phần 1: Giới thiệu chung:

Tên chủ đề : Cực trị hình học
Loại chủ đề: Nâng cao
Mục tiêu : Sau khi học xong chủ đề này học sinh cần đạt được :
+ Kiến thức : Cùng với kiến thức sách giáo khoa, hệ thống được kiến thức hình học trong chương trình THCS , biết giải bài toán tìm giá trị lớn nhất , nhỏ nhất trong hình học.
+ Kỹ năng : Biết nhận ra các dạng bài tập có liên quan đến tìm giá trị lớn nhất , nhỏ nhất trong hình học và vận dụng được các kiến thức đã học để giải chúng .
+ Thái độ : Có ý thức tự học , cẩn thận , chính xác, sáng tạo.
Thời lượng : 8 tiết
Phần 2A-Phương pháp giải bài toán cực trị hình học: 1 tiết
Phần 2B-Các kiến thức thường dùng giải bài toán cực trị hình học : 3 tiết
Phần 3 -Bài tập ôn luyện : 3 tiết
Kiểm tra : 1 tiết

Hướng dẫn tự học:
+ Đọc kỹ và hiểu được phần 2A : Phương pháp giải các bài toán cực trị hình học.
+ Đọc kỹ phần 2B : các kiến thức cần nhớ và các ví dụ sau đó tự làm các ví dụ và so sánh với bài giải trong chủ đề để rút kinh nghiệm.
+ Dựa vào các ví dụ , làm các bài tập. Nếu chưa giải được hãy đọc phần hướng dẫn giải. Phần hướng dẫn giải chỉ là bài giải chưa hoàn chỉnh , hãy trình bày bài giải đầy đủ và cụ thể.
+ Sau khi học hết chủ đề tự làm bài kiểm tra.
Phạm vi áp dụng :
Tài liệu này dùng cho :
+Học sinh khá , giỏi và ham thích bộ môn Toán
+Dạy học tự chọn môn Toán lớp 9(nâng cao)
+Dạy bồi dưỡng học sinh giỏi lớp 9.




Phần 2: Kiến thức trọng tâm

A-Phương pháp giải bài toán cực trị hình học.

1- Dạng chung của bài toán cực trị hình học :
“ Trong tất cả các hình có chung một tính chất , tìm những hình mà một đại lượng nào đó ( độ dài đoạn thẳng , số đo góc, số đo diện tích …) có giá trị lớn nhất hoặc giá trị nhỏ nhất.” và có thể được cho dưới các dạng :
a) Bài toán về dựng hình .
Ví dụ : Cho đường tròn (O) và điểm
No_avatarf

Cực tri hình học

1) Cho tam giác đều ABC nội tiếp đường tròn (O;R), M là một điểm di động trên cung AC. Trên MB lấy điểm D sao cho MD = MA. Vẽ đường tròn (I;r) tiếp xúc ngoài với đường tròn tâm O tạo M. Xác định vị trí điểm M để tổng độ dài 6 tiếp tuyến vè từ A,B,C đến đường tròn tâm I có giá trị lớn nhất.

 

2) Cho tam giác ABC cân tại A nội tiếp đường tròn (O;R).M là một điểm di động trên cung BC không chứa A. Xác định vị trí điểm M để  đạt giá trị nhỏ nhất.

No_avatar

Đường tròn (O;R) đựng (O';R') sao cho O nằm trên (O'R').Dây AB của (O) thay đổi nhưng luôn tiếp xúc với (O') tại C.Xác định dây AB để AC^2+BC^2 lớn nhất

No_avatar

Không biết ngượngLè lưỡi

 

 
Gửi ý kiến

↓ CHÚ Ý: Bài giảng này được nén lại dưới dạng ZIP và có thể chứa nhiều file. Hệ thống chỉ hiển thị 1 file trong số đó, đề nghị các thầy cô KIỂM TRA KỸ TRƯỚC KHI NHẬN XÉT  ↓