Violet
Giaoan

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 091 912 4899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Giáo án

Chương I. §14. Số nguyên tố. Hợp số. Bảng số nguyên tố

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Thcs Tây Cốc
Ngày gửi: 22h:16' 08-09-2014
Dung lượng: 115.0 KB
Số lượt tải: 198
Số lượt thích: 0 người
Sè nguyªn tè

I. KiÕn thøc cÇn nhí:
1. DÞnh nghÜa:
* Sè nguyªn tè lµ sè tù nhiªn lín h¬n 1, chØ cã hai ­íc lµ 1 vµ chÝnh nã.
* Hîp sè lµ sè tù nhiªn lín h¬n 1, cã nhiÒu h¬n hai ­íc.
2. TÝnh chÊt:
* NÕu sè nguyªn tè p chia hÕt cho sè nguyªn tè q th× p = q.
* NÕu tÝch abc chia hÕt cho sè nguyªn tè p th× Ýt nhÊt mét thõa sè cña tÝch abc chia hÕt cho sè nguyªn tè p.
* NÕu a vµ b kh«ng chia hÕt cho sè nguyªn tè p th× tÝch ab kh«ng chia hÕt cho sè nguyªn tè p .
3. C¸ch nhËn biÕt mét sè nguyªn tè:
a) Chia sè ®ã lÇn l­ît cho c¸c sè nguyªn tè ®· biÕt tõ nhá ®Õn lín.
- NÕu cã mét phÐp chia hÕt th× sè ®ã kh«ng ph¶i lµ sè nguyªn tè.
- NÕu chia cho ®Õn lóc sè th­¬ng nhá h¬n sè chia mµ c¸c phÐp chia vÉn cßn sè d­ th× ssã ®ã lµ sè nguyªn tè.
b) Mét sè cã 2 ­íc sè lín h¬n 1 th× sè ®ã kh«ng ph¶i lµ sè nguyªn tè.
4. Ph©n tÝch mét sè ra thõa sè nguyªn tè:
* Ph©n tÝch mét sè tù nhiªn lín h¬n 1 ra thõa sè nguyªn tè lµ viÕt sè ®ã d­íi d¹ng mét tÝch c¸c thõa sè nguyªn tè.
- D¹ng ph©n tÝch ra thõa sè nguyªn tè cña mçi sè nguyªn tè lµ chÝnh sè ®ã.
- Mäi hîp sè ®Òu ph©n tÝch ®­îc ra thõa sè nguyªn tè.

5. Sè c¸c ­íc sè vµ tæng c¸c ­íc sè cña mét sè:

6. Sè nguyªn tè cïng nhau:
* Hai sè nguyªn tè cïng nhau lµ hai sè cã ¦CLN b»ng 1.
Hai sè a vµ b nguyªn tè cïng nhau  ¦CLN(a, b) = 1.
C¸c sè a, b, c nguyªn tè cïng nhau  ¦CLN(a, b, c) = 1.
C¸c sè a, b, c ®«i mét nguyªn tè cïng nhau  ¦CLN(a, b) = ¦CLN(b, c) = ¦CLN(c, a) =1.
II. C¸c vÝ dô:
VD1: Ta biÕt r»ng cã 25 sè nguyªn tè nhá h¬n 100. Tæng cña 25 sè nguyªn tè lµ sè ch½n hay sè lÎ.
HD:
Trong 25 sè nguyªn tè nhá h¬n 100 cã chøa mét sè nguyªn tè ch½n duy nhÊt lµ 2, cßn 24 sè nguyªn tè cßn l¹i lµ sè lÎ. Do ®ã tæng cña 25 sè nguyªn tè lµ sè ch½n.
VD2: Tæng cña 3 sè nguyªn tè b»ng 1012. T×m sè nguyªn tè nhá nhÊt trong ba sè nguyªn tè ®ã.
HD:
V× tæng cña 3 sè nguyªn tè b»ng 1012, nªn trong 3 sè nguyªn tè ®ã tån t¹i Ýt nhÊt mét sè nguyªn tè ch½n. Mµ sè nguyªn tè ch½n duy nhÊt lµ 2 vµ lµ sè nguyªn tè nhá nhÊt. VËy sè nguyªn tè nhá nhÊt trong 3 sè nguyªn tè ®ã lµ 2.
VD3: Tæng cña 2 sè nguyªn tè cã thÓ b»ng 2003 hay kh«ng? V× sao?
HD:
V× tæng cña 2 sè nguyªn tè b»ng 2003, nªn trong 2 sè nguyªn tè ®ã tån t¹i 1 sè nguyªn tè ch½n. Mµ sè nguyªn tè ch½n duy nhÊt lµ 2. Do ®ã sè nguyªn tè cßn l¹i lµ 2001. Do 2001 chia hÕt cho 3 vµ 2001 > 3. Suy ra 2001 kh«ng ph¶i lµ sè nguyªn tè.
VD4: T×m sè nguyªn tè p, sao cho p + 2 vµ p + 4 còng lµ c¸c sè nguyªn tè.
HD:
Gi¶ sö p lµ sè nguyªn tè.
NÕu p = 2 th× p + 2 = 4 vµ p + 4 = 6 ®Òu kh«ng ph¶i lµ sè nguyªn tè.
NÕu p  3 th× sè nguyªn tè p cã 1 trong 3 d¹ng: 3k, 3k + 1, 3k + 2 víi k N*.
+) NÕu p = 3k  p = 3  p + 2 = 5 vµ p + 4 = 7 ®Òu lµ c¸c sè nguyªn tè.
+) NÕu p = 3k +1 th× p + 2 = 3k + 3 = 3(k + 1)  p + 2  3 vµ p + 2 > 3. Do ®ã
p + 2 lµ hîp sè.
+) NÕu p = 3k + 2 th× p + 4 = 3k + 6 = 3(k + 2)  p + 4  3 vµ p + 4 > 3. Do ®ã
p + 4 lµ hîp sè.
VËy víi p = 3 th× p + 2 vµ p + 4 còng lµ c¸c sè nguyªn tè.
VD5: Cho p vµ p + 4 lµ c¸c sè nguyªn tè (p > 3). Chøng minh r»ng p + 8 lµ hîp sè.
HD:
V× p lµ sè nguyªn tè vµ p > 3, nªn sè nguyªn tè p cã 1 trong 2 d¹ng: 3k + 1, 3k + 2 víi k N*.
- NÕu p = 3k + 2 th× p + 4 = 3k + 6 = 3(k + 2)  p + 4  3 vµ p + 4 > 3. Do ®ã
p + 4 lµ hîp sè ( Tr¸i víi ®Ò bµi p + 4 lµ sè nguyªn tè).
- NÕu p = 3k + 1 th× p + 8 = 3k + 9 = 3(k + 3)  p + 8  3 vµ p + 8 > 3. Do ®ã
p + 8 lµ hîp sè.
VËy sè nguyªn tè p cã d¹ng: p = 3k + 1 th× p + 8 lµ hîp sè.
VD6: Chøng minh r»ng mäi sè nguyªn tè lín h¬n 2 ®Òu cã d¹ng 4n + 1 hoÆc 4n – 1.
HD:
Mçi sè tù nhiªn n khi chia cho 4 cã thÓ cã 1 trong c¸c sè d­: 0; 1; 2; 3. Do ®ã mäi sè tù nhiªn n ®Òu cã thÓ viÕt ®­îc d­íi 1 trong 4 d¹ng: 4k, 4k + 1, 4k + 2, 4k + 3
víi k N*.
NÕu n = 4k n4 n lµ hîp sè.
NÕu n = 4k + 2 n2 n lµ hîp sè.
VËy mäi sè nguyªn tè lín h¬n 2 ®Òu cã d¹ng 4k + 1 hoÆc 4k – 1. Hay mäi sè nguyªn tè lín h¬n 2 ®Òu cã d¹ng 4n + 1 hoÆc 4n – 1 víi n N*.
VD7: T×m ssã nguyªn tè, biÕt r»ng sè ®ã b»ng tæng cña hai sè nguyªn tè vµ b»ng hiÖu cña hai sè nguyªn tè.
HD:

VD8: T×m tÊt c¶ c¸c sè nguyªn tè x, y sao cho: x2 – 6y2 = 1.
HD:

VD9: Cho p vµ p + 2 lµ c¸c sè nguyªn tè (p > 3). Chøng minh r»ng p + 16.
HD:
V× p lµ sè nguyªn tè vµ p > 3, nªn sè nguyªn tè p cã 1 trong 2 d¹ng: 3k + 1, 3k + 2 víi k N*.
- NÕu p = 3k + 1 th× p + 2 = 3k + 3 = 3(k + 1)  p + 2  3 vµ p + 2 > 3. Do ®ã
p + 2 lµ hîp sè ( Tr¸i víi ®Ò bµi p + 2 lµ sè nguyªn tè).
- NÕu p = 3k + 2 th× p + 1 = 3k + 3 = 3(k + 1) (1).
Do p lµ sè nguyªn tè vµ p > 3 p lÎ k lÎ k + 1 ch½n k + 12 (2)
Tõ (1) vµ (2) p + 16.
II. Bµi tËp vËn dông:
Bµi 1: T×m sè nguyªn tè p sao cho c¸c sè sau còng lµ sè nguyªn tè:
p + 2 vµ p + 10.
p + 10 vµ p + 20.
p + 10 vµ p + 14.
p + 14 vµ p + 20.
p + 2vµ p + 8.
p + 2 vµ p + 14.
p + 4 vµ p + 10.
p + 8 vµ p + 10.
Bµi 2: T×m sè nguyªn tè p sao cho c¸c sè sau còng lµ sè nguyªn tè:
p + 2, p + 8, p + 12, p + 14.
p + 2, p + 6, p + 8, p + 14.
p + 6, p + 8, p + 12, p + 14.
p + 2, p + 6, p + 8, p + 12, p + 14.
p + 6, p + 12, p + 18, p + 24.
p + 18, p + 24, p + 26, p + 32.
p + 4, p + 6, p + 10, p + 12, p+16.
Bµi 3:
Cho p vµ p + 4 lµ c¸c sè nguyªn tè (p > 3). Chøng minh r»ng: p + 8 lµ hîp sè.
Cho p vµ 2p + 1 lµ c¸c sè nguyªn tè (p > 3). Chøng minh r»ng: 4p + 1 lµ hîp sè.
Cho p vµ 10p + 1 lµ c¸c sè nguyªn tè (p > 3). Chøng minh r»ng: 5p + 1 lµ hîp sè.
Cho p vµ p + 8 lµ c¸c sè nguyªn tè (p > 3). Chøng minh r»ng: p + 4 lµ hîp sè.
Cho p vµ 4p + 1 lµ c¸c sè nguyªn tè (p > 3). Chøng minh r»ng: 2p + 1 lµ hîp sè.
Cho p vµ 5p + 1 lµ c¸c sè nguyªn tè (p > 3). Chøng minh r»ng: 10p + 1 lµ hîp sè.
Cho p vµ 8p + 1 lµ c¸c sè nguyªn tè (p > 3). Chøng minh r»ng: 8p - 1 lµ hîp sè.
Cho p vµ 8p - 1 lµ c¸c sè nguyªn tè (p > 3). Chøng minh r»ng: 8p + 1 lµ hîp sè.
Cho p vµ 8p2 - 1 lµ c¸c sè nguyªn tè (p > 3). Chøng minh r»ng: 8p2 + 1 lµ hîp sè.
Cho p vµ 8p2 + 1 lµ c¸c sè nguyªn tè (p > 3). Chøng minh r»ng: 8p2 - 1 lµ hîp sè.
Bµi 4: Chøng minh r»ng:
NÕu p vµ q lµ hai sè nguyªn tè lín h¬n 3 th× p2 – q2  24.
NÕu a, a + k, a + 2k (a, k N*) lµ c¸c sè nguyªn tè lín h¬n 3 th× k  6.
Bµi 5:
Mét sè nguyªn tè chia cho 42 cã sè d­ r lµ hîp sè. T×m sè d­ r.
Mét sè nguyªn tè chia cho 30 cã sè d­ r. T×m sè d­ r biÕt r»ng r kh«ng lµ sè nguyªn tè.
Bµi 6: Hai sè nguyªn tè gäi lµ sinh ®«i nÕu chóng lµ hai sè nguyªn tè lÎ liªn tiÕp. Chøng minh r»ng mét sè tù nhiªn lín h¬n 3 n»m gi÷a hai sè nguyªn tè sinh ®«i th× chia hÕt cho 6.
Bµi 7: Cho 3 sè nguyªn tè lín h¬n 3, trong ®ã sè sau lín h¬n sè tr­íc lµ d ®¬n vÞ. Chøng minh r»ng d chia hÕt cho 6.
Bµi 8: T×m sè nguyªn tè cã ba ch÷ sè, biÕt r»ng nÕu viÕt sè ®ã theo thø tù ng­îc l¹i th× ta ®­îc mét sè lµ lËp ph­¬ng cña mét sè tù nhiªn.
Bµi 9: T×m sè tù nhiªn cã 4 ch÷ sè, ch÷ sè hµng ngh×n b»ng ch÷ sè hµng ®¬n vÞ, ch÷ sè hµng tr¨m b»ng ch÷ sè hµng chôc vµ sè ®ã viÕt ®­îc d­íi d¹ng tÝch cña 3 sè nguyªn tè liªn tiÕp.
Bµi 10: T×m 3 sè nguyªn tè lÎ liªn tiÕp ®Òu lµ c¸c sè nguyªn tè.
Bµi 11: T×m 3 sè nguyªn tè liªn tiÕp p, q, r sao cho p2 + q2 + r2 còng lµ sè nguyªn tè.
Bµi 12: T×m tÊt c¶ c¸c bé ba sè nguyªn tè a, b, c sao cho a.b.c < a.b + b.c + c.a.
Bµi 13: T×m 3 sè nguyªn tè p, q, r sao cho pq + qp = r.
Bµi 14: T×m c¸c sè nguyªn tè x, y, z tho¶ m·n xy + 1 = z.
Bµi 15: T×m sè nguyªn tè 
Bài 16: Cho c¸c sè p = bc + a, q = ab + c, r = ca + b (a, b, c N*) lµ c¸c sè nguyªn tè. Chøng minh r»ng 3 sè p, q, r cã Ýt nhÊt hai sè b»ng nhau.
Bµi 17: T×m tÊt c¶ c¸c sè nguyªn tè x, y sao cho:
x2 – 12y2 = 1.
3x2 + 1 = 19y2.
5x2 – 11y2 = 1.
7x2 – 3y2 = 1.
13x2 – y2 = 3.
x2 = 8y + 1.
Bµi 18: T×m 3 sè nguyªn tè sao cho tÝch cña chóng gÊp 5 lÇn tæng cña chóng.
Bµi 19: Chøng minh r»ng ®iÒu kiÖn cÇn vµ ®ñ ®Ó p vµ 8p2 + 1 lµ c¸c sè nguyªn tè lµ
p = 3.
Bµi 20: Chøng minh r»ng: NÕu a2 – b2 lµ mét sè nguyªn tè th× a2 – b2 = a + b.
Bµi 21: Chøng minh r»ng mäi sè nguyªn tè lín h¬n 3 ®Òu cã d¹ng 6n + 1 hoÆc
6n – 1.
Bµi 22: Chøng minh r»ng tæng b×nh ph­¬ng cña 3 sè nguyªn tè lín h¬n 3 kh«ng thÓ lµ mét sè nguyªn tè.
Bµi 23: Cho sè tù nhiªn n2. Gäi p1, p2, ..., pn lµ nh÷ng sè nguyªn tè sao cho
pn  n + 1. §Æt A = p1.p2 ...pn. Chøng minh r»ng trong d·y sè c¸c sè tù nhiªn liªn tiÕp: A + 2, A + 3, ..., A + (n + 1). Kh«ng chøa mét sè nguyªn tè nµo.
Bµi 24: Chøng minh r»ng: NÕu p lµ sè nguyªn tè th× 2.3.4...(p – 3)(p – 2) - 1p.
Bµi 25: Chøng minh r»ng: NÕu p lµ sè nguyªn tè th× 2.3.4...(p – 2)(p – 1) + 1p.








 
Gửi ý kiến