Tìm kiếm Giáo án
BOI DUONG HSG TOAN 9

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Thị Thúy Mai (trang riêng)
Ngày gửi: 16h:59' 28-11-2008
Dung lượng: 616.0 KB
Số lượt tải: 539
Nguồn:
Người gửi: Nguyễn Thị Thúy Mai (trang riêng)
Ngày gửi: 16h:59' 28-11-2008
Dung lượng: 616.0 KB
Số lượt tải: 539
Số lượt thích:
1 người
(Nguyễn Thuỷ)
GIẢI PHƯƠNG TRÌNH VỚI NGHIỆM NGUYÊN
I. Phương pháp phát hiện tính chia hết của một ẩn
Xét PT: ax + by = c (1) , trong đó a,b,c Z; a 0 hoặc b 0
Ta có định lí: “PT (1) có nghiệm nguyên ( c ƯCLN(a,b)
Khi đã biết chắc PT (1) có nghiệm nguyên ta sẽ tìm các phương pháp để giải PT đó.
Ví dụ1. Giải phương trình với nghiệm nguyên : 3x + 17y = 159
Hướng dẫn : Để ý 3x và 159 đều chia hết cho 3
Giải : Vì 3x và 159 đều chia hết cho 3. Do đó 17y chia hết cho 3. Mà 17 và 3 nguyên tố cùng nhau, nên y 3. Đặt y = 3t (t Z).
=> 3x + 17.3t = 159 x + 17t = 53. Do đó : (t Z).
Thử lại, ta thấy x, y nghiệm đúng phương trình.
Vậy nghiệm nguyên của phương trình : : (t Z).
Bài tập tương tự :
1/ Tìm các nghiệm nguyên của phương trình : a) 2x + 13y = 156 ;
(Đáp số : (nếu phát hiện x 13) hoặc (nếu phát hiện y 2) (Thực chất các nghiệm trên là như nhau)
b) 35x + 20y = 120
2/ Chứng minh rằng không tồn tại các số nguyên x, y sao cho 2x2 + y2 = 2007
Giải 2x2 2, 2007 2 nên y2 lẻ y = 2k + 1. Ta có 2x2 + 4k2 + 4k = 2006. Vì 2006 chia 4 dư 2 nên 2x2 4 tức x lẻ, x = 2h + 1. Từ đó 2(2h + 1)2 + 4k2 + 4k = 2006
8h2 + 8h + 4k2 + 4k = 2004. Sốø 2004 8 mà 8h2 + 8h + 4k2 + 4k 8. Vô lí. Vậy không tồn tại các số nguyên x, y thỏa mãn 2x2 + y2 = 2007.
3/ Tồn tại hay không m, n N thỏa mãn m2 + 2006 = n2.
Giải Ta có 2006 = n2 – m2 = (n – m)(n + m). Nếu n và m không cùng tính chẵn, lẻ thì n2 – m2 = (n – m)(n + m) là số lẻ 2006. Nếu n, m cùng tính chẵn lẻ thì
n2 – m2 = (n – m)(n + m) 4. Nhưng 2006 4. Vậy không tồn tại m, n N thỏa mãn
m2 + 2006 = n2 .
II/ PHƯƠNG PHÁP TÁCH RA CÁC GIÁ TRỊ NGUYÊN
Hướng giải quyết chung : Biểu thị một ẩn theo ẩn còn lại. Dùng tính chất ẩn là một số nguyên để giải tiếp.
Ví dụ 2. Tìm các nghiệm nguyên của phương trình : xy – x – y = 2
Giải : Biểu thị x theo y : x(y – 1) = y + 2
Ta thấy y khác 1 (vì nếu y = 1 thì ta có 0x = 3, vô nghiệm.
Do đó : x = = 1 + .
Để x Z thì Z => y – 1 Ư(3)
=> y – 1 = 1
y – 1 = -1
y – 1 = -3
y – 1 = 3
=> y = 2; x= 4
y = 0; x = -2
y = -2 ; x = 0
y = 4 ; x = 2
Ví dụ 3. Tìm các nghiệm nguyên của phương trình : 7x + 4y = 23
Giải : Biểu thị y theo x ta được : y =
Để x Z thì
I. Phương pháp phát hiện tính chia hết của một ẩn
Xét PT: ax + by = c (1) , trong đó a,b,c Z; a 0 hoặc b 0
Ta có định lí: “PT (1) có nghiệm nguyên ( c ƯCLN(a,b)
Khi đã biết chắc PT (1) có nghiệm nguyên ta sẽ tìm các phương pháp để giải PT đó.
Ví dụ1. Giải phương trình với nghiệm nguyên : 3x + 17y = 159
Hướng dẫn : Để ý 3x và 159 đều chia hết cho 3
Giải : Vì 3x và 159 đều chia hết cho 3. Do đó 17y chia hết cho 3. Mà 17 và 3 nguyên tố cùng nhau, nên y 3. Đặt y = 3t (t Z).
=> 3x + 17.3t = 159 x + 17t = 53. Do đó : (t Z).
Thử lại, ta thấy x, y nghiệm đúng phương trình.
Vậy nghiệm nguyên của phương trình : : (t Z).
Bài tập tương tự :
1/ Tìm các nghiệm nguyên của phương trình : a) 2x + 13y = 156 ;
(Đáp số : (nếu phát hiện x 13) hoặc (nếu phát hiện y 2) (Thực chất các nghiệm trên là như nhau)
b) 35x + 20y = 120
2/ Chứng minh rằng không tồn tại các số nguyên x, y sao cho 2x2 + y2 = 2007
Giải 2x2 2, 2007 2 nên y2 lẻ y = 2k + 1. Ta có 2x2 + 4k2 + 4k = 2006. Vì 2006 chia 4 dư 2 nên 2x2 4 tức x lẻ, x = 2h + 1. Từ đó 2(2h + 1)2 + 4k2 + 4k = 2006
8h2 + 8h + 4k2 + 4k = 2004. Sốø 2004 8 mà 8h2 + 8h + 4k2 + 4k 8. Vô lí. Vậy không tồn tại các số nguyên x, y thỏa mãn 2x2 + y2 = 2007.
3/ Tồn tại hay không m, n N thỏa mãn m2 + 2006 = n2.
Giải Ta có 2006 = n2 – m2 = (n – m)(n + m). Nếu n và m không cùng tính chẵn, lẻ thì n2 – m2 = (n – m)(n + m) là số lẻ 2006. Nếu n, m cùng tính chẵn lẻ thì
n2 – m2 = (n – m)(n + m) 4. Nhưng 2006 4. Vậy không tồn tại m, n N thỏa mãn
m2 + 2006 = n2 .
II/ PHƯƠNG PHÁP TÁCH RA CÁC GIÁ TRỊ NGUYÊN
Hướng giải quyết chung : Biểu thị một ẩn theo ẩn còn lại. Dùng tính chất ẩn là một số nguyên để giải tiếp.
Ví dụ 2. Tìm các nghiệm nguyên của phương trình : xy – x – y = 2
Giải : Biểu thị x theo y : x(y – 1) = y + 2
Ta thấy y khác 1 (vì nếu y = 1 thì ta có 0x = 3, vô nghiệm.
Do đó : x = = 1 + .
Để x Z thì Z => y – 1 Ư(3)
=> y – 1 = 1
y – 1 = -1
y – 1 = -3
y – 1 = 3
=> y = 2; x= 4
y = 0; x = -2
y = -2 ; x = 0
y = 4 ; x = 2
Ví dụ 3. Tìm các nghiệm nguyên của phương trình : 7x + 4y = 23
Giải : Biểu thị y theo x ta được : y =
Để x Z thì
 
Các ý kiến mới nhất