Violet
Giaoan

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Giáo án

Bất đẳng thức và cực trị

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Doãn Xuân Huy
Ngày gửi: 22h:07' 22-02-2012
Dung lượng: 1.1 MB
Số lượt tải: 705
Số lượt thích: 2 người (Lê Mai, Vũ Thanh Huyền)

LỜI NÓI ĐẦU:

Các bài toán về tìm giá trị nhỏ nhất ( GTNN ) và giá trị lớn nhất ( GTLN ) của một biểu thức được gọi chung là các bài toán về cực trị. Rất nhiều bài toán dạng này được giải quyết bằng công cụ bất đẳng thức ( BĐT ). Trong chuyên đề này tôi giới thiệu lời giải một số bài toán sử dụng BĐT Cô-si , BĐT Bunhiacốpxki và một số BĐT đơn giản khác. Các bài toán về cực trị ngoài cách sử dụng BĐT còn có một số bài sử dụng phương tiện đạo hàm.

NỘI DUNG:

Để chứng minh các BĐT ta có thể sử dụng một số BĐT cơ bản hoặc dùng phương pháp đánh giá.
I.Sử dụng một số BĐT cơ bản:
Các BĐT cơ bản ở đây là BĐT Cô-si: Với n số không âm bất kì: ta luôn có:
 ; dấu bằng xảy ra khi và chỉ khi: .
BĐT Bunhiacôpxki: Với hai bộ số thực bất kì  ta luôn có:
; dấu bằng xảy ra khi và chỉ
Khi: . BĐT: ; dấu bằng xảy ra khi 
BĐT: ; trong đó  là các số dương; dấu bằng xảy ra khi và chỉ khi các số này bằng nhau.
Bài 1: Cho . Chứng minh: Giải: a/ Theo BĐT (I) ta có:  (đpcm).Dấu bằng xảy ra khi b/ Theo BĐT (I) ta có:  từ đó suy ra
đpcm. Dấu bằng xảy ra khi 
c/ Theo BĐT (I) ta có:  (đpcm). Dấu bằng xảy ra khi 
Bài 2: Cho . Chứng minh: .
Giải: Ta có: 
Từ đó suy ra đpcm. Dấu bằng xảy ra khi: .
Bài 3: Cho a > 1; b > 1. Chứng minh: 
Giải: Theo BĐT (I) ta có: ; tương tự ta cũng có:
. Cộng các vế của các BĐT này lại ta sẽ được đpcm. Dấu bằng xảy ra khi a = b = 2.
Bài 4: a,b,c là ba số không âm có tổng bằng 1. Chứng minh: .
Giải: Theo BĐT (I) ta có: 
(đpcm). Dấu bằng xảy ra khi
a = b = c =1/3.
Bài 5: Cho ba số không âm a,b,c. Chứng minh: .
Giải: Theo BĐT (I) ta có: ; tương tự ta cũng có: cộng các vế của các BĐT này lại rồi đơn giản ta sẽ được BĐT cần chứng minh. Dấu bằng xảy ra khi a = b = c.
Bài 6: Cho ba số dương x,y,z. Chứng minh: .
Giải: Theo BĐT (I) ta có: 
(đpcm). Dấu bằng xảy ra khi x = y/2 =z/3.
Bài 7: Tìm GTNN của biểu thức trong đó x,y là các số dương
Giải: Theo BĐT (I) ta có: 
Vậy GTNN của P bằng  khi y = 2x.
Bài 8: Ba số thực a,b,c thỏa mãn hệ thức: . Hãy tìm GTLN của biểu thức 
Giải: Theo BĐT (I) ta có: 
Vậy GTLN của S bằng 3 khi a = b = c = 1.
Bài 9: x,y là các số thực thỏa mãn các điều kiện: . Tìm GTLN của biểu thức:
.
Giải: Theo BĐT (I) ta có: 
. Vậy GTLN của A bằng 36 khi x = 0 và y = 2.
Bài 10: x,y,z là các số không âm có tổng bằng 1. Tìm GTLN của biểu thức: .
Giải: Theo BĐT (I) ta có: 
. Vậy MaxP = 8/729 khi x = y = z = 1/3.
Bài 11: a,b,c là các số dương. Chứng minh: 
Giải: Theo BĐT (I) ta có: . Tương tự
ta cũng có: . Cộng các BĐT này lại rồi đơn giản ta sẽ được BĐT cần chứng minh. Dấu bằng xảy ra khi a = b = c.
Chú ý: Nếu  thì ta có BĐT : 
Bài 12: Cho 3 số thực dương a,b,c. Chứng minh: 
Giải: Theo BĐT (I) ta có: . Tương tự ta cũng
có: . Cộng các vế của các BĐT
này lại rồi đơn giản ta sẽ được BĐT cần chứng minh. Dấu bằng xảy ra khi a = b = c.
Bài 13: Các số thực dương x,y,z thỏa mãn điều kiện: . Tìm GTNN của biểu thức:
.
Giải: Theo BĐT (I) ta có: 
. Vậy MinS
 
Gửi ý kiến