Violet
Giaoan

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 091 912 4899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Giáo án

TUYEN CHON 80 BAI HINH ON VAO 10 CO LOI GIAI

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Văn Mạnh
Ngày gửi: 15h:23' 05-05-2021
Dung lượng: 2.6 MB
Số lượt tải: 468
Số lượt thích: 0 người

Bài 1. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P.
Chứng minh rằng:
Tứ giác CEHD, nội tiếp .
Bốn điểm B,C,E,F cùng nằm trên một đường tròn.
AE.AC = AH.AD; AD.BC = BE.AC.
H và M đối xứng nhau qua BC.
Xác định tâm đường tròn nội tiếp tam giác DEF.
Lời giải:
Xét tứ giác CEHD ta có:
( CEH = 900 (Vì BE là đường cao)
( CDH = 900 (Vì AD là đường cao)
=> ( CEH + ( CDH = 1800

Mà ( CEH và ( CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp
Theo giả thiết: BE là đường cao => BE ( AC => (BEC = 900.
CF là đường cao => CF ( AB => (BFC = 900.
Như vậy E và F cùng nhìn BC dưới một góc 900 => E và F cùng nằm trên đường tròn đường kính BC.
Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn.
Xét hai tam giác AEH và ADC ta có: ( AEH = ( ADC = 900 ; (A là góc chung
=> ( AEH ( (ADC =>  => AE.AC = AH.AD.
* Xét hai tam giác BEC và ADC ta có: ( BEC = ( ADC = 900 ; (C là góc chung
=> ( BEC ( (ADC =>  => AD.BC = BE.AC.
4. Ta có (C1 = (A1 (vì cùng phụ với góc ABC)
(C2 = (A1 (vì là hai góc nội tiếp cùng chắn cung BM)
=> (C1 = ( C2 => CB là tia phân giác của góc HCM; lại có CB ( HM => ( CHM cân tại C
=> CB cũng là đương trung trực của HM vậy H và M đối xứng nhau qua BC.
5. Theo chứng minh trên bốn điểm B,C,E,F cùng nằm trên một đường tròn
=> (C1 = (E1 (vì là hai góc nội tiếp cùng chắn cung BF)
Cũng theo chứng minh trên CEHD là tứ giác nội tiếp
(C1 = (E2 (vì là hai góc nội tiếp cùng chắn cung HD)
(E1 = (E2 => EB là tia phân giác của góc FED.
Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE mà BE và CF cắt nhau tại H do đó H là tâm đường tròn nội tiếp tam giác DEF.

Bài 2. Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE.
Chứng minh tứ giác CEHD nội tiếp .
Bốn điểm A, E, D, B cùng nằm trên một đường tròn.
Chứng minh ED = BC.
Chứng minh DE là tiếp tuyến của đường tròn (O).
Tính độ dài DE biết DH = 2 Cm, AH = 6 Cm.
Lời giải:
Xét tứ giác CEHD ta có:
( CEH = 900 (Vì BE là đường cao)
 ( CDH = 900 (Vì AD là đường cao)
=> ( CEH + ( CDH = 1800
Mà ( CEH và ( CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp
2. Theo giả thiết: BE là đường cao => BE ( AC => (BEA = 900.
AD là đường cao => AD ( BC => (BDA = 900.
Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.
Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.
3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến
=> D là trung điểm của BC. Theo trên ta có (BEC = 900 .
Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = BC.
Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => (E1 = (A1 (1).
Theo trên DE = BC => tam giác DBE cân tại D => (E3 = (B1 (2)
Mà (B1 = (A1 ( vì cùng phụ với góc ACB) => (E1 = (E3 => (E1 + (E2 = (E2 + (E3
Mà (E1 + (E2 = (BEA = 900 => (E2 + (E3 = 900 = (OED
 
Gửi ý kiến