Thư mục

Hỗ trợ kỹ thuật

  • (Hotline:
    - (04) 66 745 632
    - 0982 124 899
    Email: hotro@violet.vn
    )

Thống kê

  • lượt truy cập   (chi tiết)
    trong hôm nay
  • lượt xem
    trong hôm nay
  • thành viên
  • Chào mừng quý vị đến với Thư viện Giáo án điện tử.

    Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tư liệu của Thư viện về máy tính của mình.
    Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay ô bên phải.

    Chuyên đề_ Phép quay và phép đối xứng tâm


    (Tài liệu chưa được thẩm định)
    Nguồn:
    Người gửi: Trần Thị Quỳnh
    Ngày gửi: 16h:08' 25-06-2009
    Dung lượng: 56.6 KB
    Số lượt tải: 268
    Số lượt thích: 0 người
    Bài tập về phép quay và phép đối xứng tâm trong mặt phẳng
    
    Sử dụng phép quay để giải bài toán quỹ tích
    Bài 1 :
    Cho trước đường tròn (O;R) và một điểm A cố định nằm ngoài đường tròn. Gọi B là điểm chạy trên đường tròn (O;R). Vẽ hình vuông ABCD theo chiều kim đồng hồ. Hãy tìm tập hợp các điểm D.
    Cho trước đường thẳng d và một điểm A cố định không thuộc d. Gọi M là một điểm di động trên d. Vẽ tam giác AMN vuông cân tại A và ngược chiều kim đồng hồ. Hãy tìm tập hợp các điểm N
    
    
    
    Bài 2 :
    Cho trước đường thẳng d và một điểm A cố định không thuộc đường thẳng d. Gọi B là một điểm di động trên d. Tìm tập hợp các điểm M sao cho tam giác ABM là tam giác đều và chiều quay ABM là ngược chiều quay kim đồng hồ
    Cho trước đường tròn (O;R) và hai điểm A, B cùng thuộc đường tròn (O;R). Gọi M là một điểm di động trên cung lớn. Tia phân giác của góc cắt (O;R) tại D. Lấy điểm N sao cho AN=AM. Hãy tìm tập hợp các điểm N
    
    
    
    Bài 3 :
    Cho trước đường tròn tâm (O;R) và một điểm I cố định nằm ngoài đường tròn (O;R). Gọi A là một điểm di động trên đường tròn (O;R). Vẽ hình vuông ABCD nhận điểm I làm tâm. Tìm quỹ tích các điểm B, C, D
    Cho trước đường thẳng d và một điểm G cố định không thuộc d. Gọi A là điểm di động trên d. Vẽ tam giác đều ABC nhận G làm trọng tâm. Hãy tìm quỹ tích hai điểm B và C
    
    
    
    Bài 4 :
    Cho trước đường tròn (O;R) và tam giác ABC cố định. Gọi M là một điểm di động trên đường tròn (O;R). Gọi là điểm đối xứng với qua Gọi là điểm đối xứng với qua Gọi là điểm đối xứng với qua C. Tìm quỹ tích điểm
    Cho nửa đường tròn tâm O, đường kính BC cố định. Gọi A là điểm chạy trên nửa đường tròn đó. Dựng hình vuông ABEF ra phía ngoài tam giác ABC. Chứng minh rằng điểm E di động trên nửa đường tròn cố định
    
    
    
    Sử dụng phép quay để giải bài toán dựng hình
    Bài 5 :
    Cho trước đường tròn (O;R), đường thẳng d và một điểm A. Hãy dựng tam giác đều ABC ngược chiều kim đồng hồ sao cho điểm B thuộc đường tròn (O;R) và điểm C thuộc đường thẳng d.
    Cho trước tam giác ABC và một điểm M thuộc cạnh AB. Hãy dựng điểm N thuộc cạnh BC và điểm E thuộc cạnh AC sao cho tam giác MNE vuông cân tại M
    
    
    
    Bài 6 :
    Hãy dựng hình vuông ABCD biết trước vị trí 3 điểm : tâm O hình vuông, điểm M thuộc cạnh AB và điểm N thuộc cạnh BC kéo dài
    Cho trước hai đường tròn đồng tâm là và ở đó Cho trước điểm A thuộc đường tròn Hãy dựng hình vuông ABCD ngược chiều kim đồng hồ sao cho điểm B thuộc và hai điểm C, D cùng thuộc đường tròn
    
    
    
    
    Bài 7 :
     
    Gửi ý kiến

    ↓ CHÚ Ý: Bài giảng này được nén lại dưới dạng ZIP và có thể chứa nhiều file. Hệ thống chỉ hiển thị 1 file trong số đó, đề nghị các thầy cô KIỂM TRA KỸ TRƯỚC KHI NHẬN XÉT  ↓

    print