Chào mừng quý vị đến với Thư viện Giáo án điện tử.

Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tư liệu của Thư viện về máy tính của mình.
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay ô bên phải.

Đề cương ôn tập Toán 12 (mới làm)

(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Trần Thanh Vân (trang riêng)
Ngày gửi: 20h:29' 09-12-2009
Dung lượng: 168.5 KB
Số lượt tải: 657
Số lượt thích: 0 người
ĐỀ CƯƠNG ÔN TẬP HỌC KỲ I
Môn: Toán khối 12

PHẦN I: LÝ THUYẾT
I. Đại số và giải tích.
Chương I
1. Sự biến thiên và cự trị của hàm số:
Dấu hiệu nhận biết hàm số đồng biến, nghịch biến trên TXĐ của nó.
Cách tìm cực trị của hàm số, dấu hiệu nhận biết cực đại, cực tiểu của hàm số tại x0 thuộc TXĐ.
2. GTLN, GTNT của hàm số.
Định nghĩa và các quy tắc xác định GTLN, GTNN của hàm số liên tục trên một đoạn, một khoảng.
3. Tiệm cận của của hàm số.
Định nghĩa về tiệm cận ngang, tiệm cận đứng của hàm số.
Phương pháp tìm tiệm cận của một số hàm số đơn giản thường gặp.
4. Sơ đồ khảo sát hàm số.
Khảo sát các hàm số thường gặp: Hàm số bậc hai, bậc ba, bậc bốn trùng phương, hàm số bậc nhất trên bậc nhất.
Khảo sát một số hàm số khác: Hàm lũy thừa, hàm số mũ, hàm số lôgarit.
5. Các bài toán liên quan đến khảo sát hàm số và phương pháp giải các bài toán đó:
Bài toán về sự tương giao của hai đồ thị => bài toán biện luận số nghiệm của phương trình bằng đồ thị, bài toán chứng minh hai đồ thị luôn có điểm chung bằng cách sử dụng phương trình.
Bài toán tìm tiếp tuyến của hàm số tại một điểm thuộc đồ thị hàm số và tìm phương trình tiếp tuyến của đồ thị hàm số khi biết phương của tiếp tuyến.
Bài toán tìm tiếp tuyến của đồ thị hàm số biết tiếp tuyến đi qua điểm cho trước không thuộc đồ thị.
Chương II
1. Lũy thừa và các tính chất của lũy thừa.
2. Lôgarit và các tính chất của logarit.
3. Hàm số mũ, hàm số lôgarit và các tính chất của chúng.
4. Phương trình mũ, phương trình loogarit và cách giải các phương trình đó.
5. Bất phương trình mũ, bất phương trình logarit và cách giải các bất phương trình đơn giản.
Chương III
Nguyên hàm: Định nghĩa, tính chất, các nguyên hàm cơ bản, cách tính các nguyên hàm cơ bản.
Phương pháp tìm nguyên hàm từng phần, phương pháp đổi biến số.
II. Hình học
Chương I
1. Khối đa diện và các khái niệm liên quan.
2. Khối đa diện lồi, khối đa diện đều và các tính chất.
3. Thể tích khối đa diện: Định nghĩa, tính chất, thể tích khối chóp, khối lăng trụ.
Chương II
1. Khái niệm về mặt tròn xoay, mặt trụ tròn xoay, mặt nón tròn xoay.
2. Thể tích, diện tích xung quanh của mặt nón tròn xoay và mặt trụ tròn xoay.
3. Mặt cầu, khối cầu và các khái niệm liên quan
PHẦN II: BÀI TẬP
I. Đại số và giải tích
Chương I
Bài 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a)  ; b) y = x3 – 6x2 + 9x; c) y = - x3 + 3x2 -2 ;
d) y = - x3 + 3x2 ; e) y = 2x3 + 3x2 – 1; e) y = -x3 + 3x2 - 9x +1.
Bài 2: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) y = x4 – 2x2 + 1; b) y = -x4 + 3x2 + 4; c) y = x4 - 3x2 + 4;
Bài 3: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a/ y =  b/ y =  c/ y =  d/ y = 
Bài 4: Cho hàm số (C): y = -x3 + 3x + 2
a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C)
b) Dựa vào đồ thị (C), biện luận theo m số nghiệm của phương trình: x3–3x–2+m = 0
ĐS: * m > 4: 1 n0; * m = 4: 2 n0; * 0 < m < 4: 3 n0; * m = 0: 2 n0; * m < 0: 1 n0
c) Viết phương trình tiếp tuyến tại điểm I(0; 2). ĐS: y = 3x + 2
d) Viết phương trình đường thẳng đi qua điểm cực đại và điểm cực tiểu của đồ thị (C)
HD: PT đt đi qua 2 điểm A(xA; yA) và B(xB; yB) có dạng: . ĐS: y = 2x + 2
Bài 5: Cho hàm số (C): y = x4 – 2x2 – 3
a)
 
Gửi ý kiến
print